[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Precise Segmentation for Children Handwriting Analysis by Combining Multiple Deep Models with Online Knowledge

  • Conference paper
  • First Online:
Document Analysis and Recognition - ICDAR 2023 (ICDAR 2023)

Abstract

We present a strategy, called Seq2Seg, to reach both precise and accurate recognition and segmentation for children handwritten words. Reaching such high performance for both tasks is necessary to give personalized feedback to children who are learning how to write. The first contribution is to combine the predictions of an accurate Seq2Seq model with the predictions of a R-CNN object detector. The second one is to refine the bounding box predictions provided by the detector with a segmentation lattice computed from the online signal. An ablation study shows that both contributions are relevant, and their combination is efficient enough for immediate feedback and achieves state of the art results even compared to more informed systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sayre, K.M.: Machine recognition of handwritten words: a project report. Pattern Recognit. 5(3), 213–228 (1973)

    Article  Google Scholar 

  2. Anquetil, E., Lorette, G.: Perceptual model of handwriting drawing application to the handwriting segmentation problem. In: 4th International Conference Document Analysis and Recognition (ICDAR 1997), 2-Volume Set, 18–20 August 1997, Ulm, Germany, Proceedings, p. 112. IEEE Computer Society (1997)

    Google Scholar 

  3. Anquetil, E., Lorette, G.: On-line handwriting character recognition system based on hierarchical qualitative fuzzy modelling. In: Progress in Handwriting Recognition, pp. 109–116 (1997)

    Google Scholar 

  4. Simonnet, D., Girard, N., Anquetil, É., Renault, M., Thomas, S.: Evaluation of children cursive handwritten words for e-Education. Pattern Recogn. Lett. 121, 133–139 (2019)

    Article  Google Scholar 

  5. Michael, J., Labahn, R., Grüning, T., Zöllner, J.: Evaluating sequence-to-sequence models for handwritten text recognition. In: 2019 International Conference on Document Analysis and Recognition, ICDAR 2019, Sydney, Australia, 20–25 September 2019, pp. 1286–1293. IEEE (2019)

    Google Scholar 

  6. Coquenet, D., Chatelain, C., Paquet, T.: End-to-end handwritten paragraph text recognition using a vertical attention network. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2022)

    Google Scholar 

  7. Kang, L., Riba, P., Rusiñol, M., Fornés, A., Villegas, M.: Pay attention to what you read: Non-recurrent handwritten text-line recognition. Pattern Recognit. 129, 108766 (2022)

    Article  Google Scholar 

  8. Barrere, K., Soullard, Y., Lemaitre, A., Coüasnon, B.: Transformers for Historical Handwritten Text Recognition. In: Doctoral Consortium - ICDAR 2021, Lausanne, Switzerland (2021)

    Google Scholar 

  9. Marti, U.-V., Bunke, H.: A full English sentence database for off-line handwriting recognition. In: Fifth International Conference on Document Analysis and Recognition, ICDAR 1999, 20–22 September 1999, Bangalore, India, pp. 705–708. IEEE Computer Society (1999)

    Google Scholar 

  10. Liwicki, M., Bunke, H.: IAM-OnDB - an on-line English sentence database acquired from handwritten text on a whiteboard. In: Eighth International Conference on Document Analysis and Recognition (ICDAR 2005), 29 August - 1 September 2005, Seoul, Korea, pages 956–961. IEEE Computer Society (2005)

    Google Scholar 

  11. Graves, A., Fernández, S., Gomez, F.J., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Machine Learning, Proceedings of the Twenty-Third International Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, 25–29 June 2006, vol. 148 of ACM International Conference Proceeding Series, pp. 369–376. ACM (2006)

    Google Scholar 

  12. Zeyer, A., Schlüter, R., Ney, H.: Why does CTC result in peaky behavior? CoRR, abs/2105.14849 (2021)

    Google Scholar 

  13. Liu, H., Jin, S., Zhang, C.: Connectionist temporal classification with maximum entropy regularization. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., (edn.), Advances in Neural Information Processing Systems vol. 31, pp. 839–849 (2018)

    Google Scholar 

  14. Li, H., Wang, W.: Reinterpreting CTC training as iterative fitting. Pattern Recognit. 105, 107392 (2020)

    Article  Google Scholar 

  15. Krichen, O., Corbillé, S., Anquetil, E., et al.: Combination of explicit segmentation with Seq2Seq recognition for fine analysis of children handwriting. IJDAR 25, pp. 339–350 (2022). https://doi.org/10.1007/s10032-022-00409-4

  16. Krichen, O., Corbillé, S., Anquetil, E., Girard, N., Nerdeux, P.: Online analysis of children handwritten words in dictation context. In: Barney Smith, E.H., Pal, U. (eds.) ICDAR 2021. LNCS, vol. 12916, pp. 125–140. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86198-8_10

    Chapter  Google Scholar 

  17. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017, pp. 2980–2988. IEEE Computer Society (2017)

    Google Scholar 

  18. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R., (edn.) Advances in Neural Information Processing Systems. vol. 28, pp. 91–99 (2015)

    Google Scholar 

  19. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra R-CNN: towards balanced learning for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 821–830. Computer Vision Foundation/IEEE (2019)

    Google Scholar 

  20. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 779–788. IEEE Computer Society (2016)

    Google Scholar 

  21. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: YOLOv4: Optimal speed and accuracy of object detection. CoRR, abs/2004.10934 (2020)

    Google Scholar 

  22. Li, C., et al.: YOLOv6: A single-stage object detection framework for industrial applications. CoRR, abs/2209.02976 (2022)

    Google Scholar 

  23. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. CoRR, abs/2207.02696 (2022)

    Google Scholar 

  24. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  25. Mouchère, H., Bayoudh, S., Anquetil, E., Miclet, L.: Synthetic on-line handwriting generation by distortions and analogy. In: 13th Conference of the International Graphonomics Society (IGS2007), pp. 10–13, Melbourne, Australia, November 2007

    Google Scholar 

  26. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019)

    Google Scholar 

  27. Wang, X., Song, J.-Y.: ICIoU: improved loss based on complete intersection over union for bounding box regression. IEEE Access 9, 105686–105695 (2021)

    Article  Google Scholar 

  28. Damerau, F.: A technique for computer detection and correction of spelling errors. Commun. ACM 7(3), 171–176 (1964)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Corbillé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Corbillé, S., Anquetil, É., Fromont, É. (2023). Precise Segmentation for Children Handwriting Analysis by Combining Multiple Deep Models with Online Knowledge. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds) Document Analysis and Recognition - ICDAR 2023. ICDAR 2023. Lecture Notes in Computer Science, vol 14190. Springer, Cham. https://doi.org/10.1007/978-3-031-41685-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41685-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41684-2

  • Online ISBN: 978-3-031-41685-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics