Abstract
This paper proposes a Segmentation and Key point Collaboration Network (SKCN) for structure recognition of complex tables with geometric deformations. First, we combine the cell regions of the segmentation branch and the corner locations of the key point regression branch in the SKCN to obtain more reliable detection bounding box candidates. Then, we propose a Centroid Filtering-based Non-Maximum Suppression algorithm (CF-NMS) to deal with the problem of overlapping detected bounding boxes. After obtaining the bounding boxes of all cells, we propose a post-processing method to predict the logical relationships of cells to finally recover the structure of the table. In addition, we design a module for online generation of tabular data by applying color, shading and geometric transformation to enrich the sample diversity of the existing natural scene table datasets. Experimental results show that our method achieves state-of-the-art performance on two public benchmarks, TAL_OCR_TABLE and WTW.
Z. Li and F. Peng—Authors contributed equally as first author.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chi, Z., Huang, H., Xu, H.D., Yu, H., Yin, W., Mao, X.L.: Complicated table structure recognition. arXiv preprint arXiv:1908.04729 (2019)
TAL Contributors: TAL_OCR_TABLE: a scene table structure recognition benchmark (2021). https://ai.100tal.com/dataset
Deng, Y., Rosenberg, D., Mann, G.: Challenges in end-to-end neural scientific table recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 894–901. IEEE (2019)
Gao, L., et al.: ICDAR 2019 competition on table detection and recognition (CTDAR). In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1510–1515. IEEE (2019)
Göbel, M., Hassan, T., Oro, E., Orsi, G.: A methodology for evaluating algorithms for table understanding in pdf documents. In: Proceedings of the 2012 ACM Symposium on Document Engineering, pp. 45–48 (2012)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Itonori, K.: Table structure recognition based on textblock arrangement and ruled line position. In: Proceedings of 2nd International Conference on Document Analysis and Recognition (ICDAR 1993), pp. 765–768. IEEE (1993)
Kieninger, T., Dengel, A.: The T-Recs table recognition and analysis system. In: Lee, S.-W., Nakano, Y. (eds.) DAS 1998. LNCS, vol. 1655, pp. 255–270. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48172-9_21
Laurentini, A., Viada, P.: Identifying and understanding tabular material in compound documents. In: International Conference on Pattern Recognition, p. 405. IEEE Computer Society Press (1992)
Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_45
Li, M., Cui, L., Huang, S., Wei, F., Zhou, M., Li, Z.: TableBank: table benchmark for image-based table detection and recognition. In: Proceedings of The 12th Language Resources and Evaluation Conference, pp. 1918–1925 (2020)
Lin, W., et al.: TSRFormer: table structure recognition with transformers. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 6473–6482 (2022)
Liu, H., Li, X., Liu, B., Jiang, D., Liu, Y., Ren, B.: Neural collaborative graph machines for table structure recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4533–4542 (2022)
Liu, H., et al.: Show, read and reason: table structure recognition with flexible context aggregator. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 1084–1092 (2021)
Liu, Y., Jin, L.: Deep matching prior network: toward tighter multi-oriented text detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1962–1969 (2017)
Liu, Y., Zhang, S., Jin, L., Xie, L., Wu, Y., Wang, Z.: Omnidirectional scene text detection with sequential-free box discretization. arXiv preprint arXiv:1906.02371 (2019)
Long, R., et al.: Parsing table structures in the wild. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 944–952 (2021)
Ma, K., Shu, Z., Bai, X., Wang, J., Samaras, D.: DocUNet: document image unwarping via a stacked U-Net. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4709 (2018)
Paliwal, S.S., Vishwanath, D., Rahul, R., Sharma, M., Vig, L.: TableNet: deep learning model for end-to-end table detection and tabular data extraction from scanned document images. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 128–133. IEEE (2019)
Prasad, D., Gadpal, A., Kapadni, K., Visave, M., Sultanpure, K.: CascadeTabNet: an approach for end to end table detection and structure recognition from image-based documents. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 572–573 (2020)
Qasim, S.R., Mahmood, H., Shafait, F.: Rethinking table recognition using graph neural networks. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 142–147. IEEE (2019)
Qiao, L., et al.: LGPMA: complicated table structure recognition with local and global pyramid mask alignment. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12821, pp. 99–114. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86549-8_7
Raja, S., Mondal, A., Jawahar, C.V.: Table structure recognition using top-down and bottom-up cues. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 70–86. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_5
Rastan, R., Paik, H.Y., Shepherd, J.: Texus: a unified framework for extracting and understanding tables in pdf documents. Inf. Process. Manage. 56(3), 895–918 (2019)
Schreiber, S., Agne, S., Wolf, I., Dengel, A., Ahmed, S.: DeepDeSRT: deep learning for detection and structure recognition of tables in document images. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 1162–1167. IEEE (2017)
Shigarov, A., Mikhailov, A., Altaev, A.: Configurable table structure recognition in untagged pdf documents. In: Proceedings of the 2016 ACM Symposium on Document Engineering, pp. 119–122 (2016)
Siddiqui, S.A., Fateh, I.A., Rizvi, S.T.R., Dengel, A., Ahmed, S.: DeepTabStR: deep learning based table structure recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1403–1409. IEEE (2019)
Tensmeyer, C., Morariu, V.I., Price, B., Cohen, S., Martinez, T.: Deep splitting and merging for table structure decomposition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 114–121. IEEE (2019)
Wang, H., Xue, Y., Zhang, J., Jin, L.: Scene table structure recognition with segmentation collaboration and alignment. Pattern Recogn. Lett. 165, 146–153 (2022)
Ye, J., et al.: PingAn-VCGroup’s solution for ICDAR 2021 competition on scientific literature parsing task B: table recognition to HTML. arXiv preprint arXiv:2105.01848 (2021)
Zhang, Z., Zhang, J., Du, J., Wang, F.: Split, embed and merge: an accurate table structure recognizer. Pattern Recogn. 126, 108565 (2022)
Zheng, X., Burdick, D., Popa, L., Zhong, X., Wang, N.X.R.: Global table extractor (GTE): a framework for joint table identification and cell structure recognition using visual context. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 697–706 (2021)
Zhong, X., ShafieiBavani, E., Jimeno Yepes, A.: Image-based table recognition: data, model, and evaluation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 564–580. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_34
Acknowledgments
This research is supported in part by GD-NSF (No. 2021A1515011870), NSFC (Grant no. 61771199), Zhuhai Industry Core and Key Technology Research Project (No. 2220004002350), and the Science and Technology Foundation of Guangzhou Huangpu Development District (Grant 2020GH17).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, Z., Peng, F., Xue, Y., Hao, N., Jin, L. (2023). Scene Table Structure Recognition with Segmentation and Key Point Collaboration. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds) Document Analysis and Recognition - ICDAR 2023. ICDAR 2023. Lecture Notes in Computer Science, vol 14188. Springer, Cham. https://doi.org/10.1007/978-3-031-41679-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-41679-8_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-41678-1
Online ISBN: 978-3-031-41679-8
eBook Packages: Computer ScienceComputer Science (R0)