[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Scene Table Structure Recognition with Segmentation and Key Point Collaboration

  • Conference paper
  • First Online:
Document Analysis and Recognition - ICDAR 2023 (ICDAR 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14188))

Included in the following conference series:

Abstract

This paper proposes a Segmentation and Key point Collaboration Network (SKCN) for structure recognition of complex tables with geometric deformations. First, we combine the cell regions of the segmentation branch and the corner locations of the key point regression branch in the SKCN to obtain more reliable detection bounding box candidates. Then, we propose a Centroid Filtering-based Non-Maximum Suppression algorithm (CF-NMS) to deal with the problem of overlapping detected bounding boxes. After obtaining the bounding boxes of all cells, we propose a post-processing method to predict the logical relationships of cells to finally recover the structure of the table. In addition, we design a module for online generation of tabular data by applying color, shading and geometric transformation to enrich the sample diversity of the existing natural scene table datasets. Experimental results show that our method achieves state-of-the-art performance on two public benchmarks, TAL_OCR_TABLE and WTW.

Z. Li and F. Peng—Authors contributed equally as first author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 95.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 119.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chi, Z., Huang, H., Xu, H.D., Yu, H., Yin, W., Mao, X.L.: Complicated table structure recognition. arXiv preprint arXiv:1908.04729 (2019)

  2. TAL Contributors: TAL_OCR_TABLE: a scene table structure recognition benchmark (2021). https://ai.100tal.com/dataset

  3. Deng, Y., Rosenberg, D., Mann, G.: Challenges in end-to-end neural scientific table recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 894–901. IEEE (2019)

    Google Scholar 

  4. Gao, L., et al.: ICDAR 2019 competition on table detection and recognition (CTDAR). In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1510–1515. IEEE (2019)

    Google Scholar 

  5. Göbel, M., Hassan, T., Oro, E., Orsi, G.: A methodology for evaluating algorithms for table understanding in pdf documents. In: Proceedings of the 2012 ACM Symposium on Document Engineering, pp. 45–48 (2012)

    Google Scholar 

  6. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  7. Itonori, K.: Table structure recognition based on textblock arrangement and ruled line position. In: Proceedings of 2nd International Conference on Document Analysis and Recognition (ICDAR 1993), pp. 765–768. IEEE (1993)

    Google Scholar 

  8. Kieninger, T., Dengel, A.: The T-Recs table recognition and analysis system. In: Lee, S.-W., Nakano, Y. (eds.) DAS 1998. LNCS, vol. 1655, pp. 255–270. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48172-9_21

    Chapter  Google Scholar 

  9. Laurentini, A., Viada, P.: Identifying and understanding tabular material in compound documents. In: International Conference on Pattern Recognition, p. 405. IEEE Computer Society Press (1992)

    Google Scholar 

  10. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_45

    Chapter  Google Scholar 

  11. Li, M., Cui, L., Huang, S., Wei, F., Zhou, M., Li, Z.: TableBank: table benchmark for image-based table detection and recognition. In: Proceedings of The 12th Language Resources and Evaluation Conference, pp. 1918–1925 (2020)

    Google Scholar 

  12. Lin, W., et al.: TSRFormer: table structure recognition with transformers. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 6473–6482 (2022)

    Google Scholar 

  13. Liu, H., Li, X., Liu, B., Jiang, D., Liu, Y., Ren, B.: Neural collaborative graph machines for table structure recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4533–4542 (2022)

    Google Scholar 

  14. Liu, H., et al.: Show, read and reason: table structure recognition with flexible context aggregator. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 1084–1092 (2021)

    Google Scholar 

  15. Liu, Y., Jin, L.: Deep matching prior network: toward tighter multi-oriented text detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1962–1969 (2017)

    Google Scholar 

  16. Liu, Y., Zhang, S., Jin, L., Xie, L., Wu, Y., Wang, Z.: Omnidirectional scene text detection with sequential-free box discretization. arXiv preprint arXiv:1906.02371 (2019)

  17. Long, R., et al.: Parsing table structures in the wild. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 944–952 (2021)

    Google Scholar 

  18. Ma, K., Shu, Z., Bai, X., Wang, J., Samaras, D.: DocUNet: document image unwarping via a stacked U-Net. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4709 (2018)

    Google Scholar 

  19. Paliwal, S.S., Vishwanath, D., Rahul, R., Sharma, M., Vig, L.: TableNet: deep learning model for end-to-end table detection and tabular data extraction from scanned document images. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 128–133. IEEE (2019)

    Google Scholar 

  20. Prasad, D., Gadpal, A., Kapadni, K., Visave, M., Sultanpure, K.: CascadeTabNet: an approach for end to end table detection and structure recognition from image-based documents. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 572–573 (2020)

    Google Scholar 

  21. Qasim, S.R., Mahmood, H., Shafait, F.: Rethinking table recognition using graph neural networks. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 142–147. IEEE (2019)

    Google Scholar 

  22. Qiao, L., et al.: LGPMA: complicated table structure recognition with local and global pyramid mask alignment. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12821, pp. 99–114. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86549-8_7

    Chapter  Google Scholar 

  23. Raja, S., Mondal, A., Jawahar, C.V.: Table structure recognition using top-down and bottom-up cues. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 70–86. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_5

    Chapter  Google Scholar 

  24. Rastan, R., Paik, H.Y., Shepherd, J.: Texus: a unified framework for extracting and understanding tables in pdf documents. Inf. Process. Manage. 56(3), 895–918 (2019)

    Article  Google Scholar 

  25. Schreiber, S., Agne, S., Wolf, I., Dengel, A., Ahmed, S.: DeepDeSRT: deep learning for detection and structure recognition of tables in document images. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 1, pp. 1162–1167. IEEE (2017)

    Google Scholar 

  26. Shigarov, A., Mikhailov, A., Altaev, A.: Configurable table structure recognition in untagged pdf documents. In: Proceedings of the 2016 ACM Symposium on Document Engineering, pp. 119–122 (2016)

    Google Scholar 

  27. Siddiqui, S.A., Fateh, I.A., Rizvi, S.T.R., Dengel, A., Ahmed, S.: DeepTabStR: deep learning based table structure recognition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1403–1409. IEEE (2019)

    Google Scholar 

  28. Tensmeyer, C., Morariu, V.I., Price, B., Cohen, S., Martinez, T.: Deep splitting and merging for table structure decomposition. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 114–121. IEEE (2019)

    Google Scholar 

  29. Wang, H., Xue, Y., Zhang, J., Jin, L.: Scene table structure recognition with segmentation collaboration and alignment. Pattern Recogn. Lett. 165, 146–153 (2022)

    Article  Google Scholar 

  30. Ye, J., et al.: PingAn-VCGroup’s solution for ICDAR 2021 competition on scientific literature parsing task B: table recognition to HTML. arXiv preprint arXiv:2105.01848 (2021)

  31. Zhang, Z., Zhang, J., Du, J., Wang, F.: Split, embed and merge: an accurate table structure recognizer. Pattern Recogn. 126, 108565 (2022)

    Article  Google Scholar 

  32. Zheng, X., Burdick, D., Popa, L., Zhong, X., Wang, N.X.R.: Global table extractor (GTE): a framework for joint table identification and cell structure recognition using visual context. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 697–706 (2021)

    Google Scholar 

  33. Zhong, X., ShafieiBavani, E., Jimeno Yepes, A.: Image-based table recognition: data, model, and evaluation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 564–580. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_34

    Chapter  Google Scholar 

Download references

Acknowledgments

This research is supported in part by GD-NSF (No. 2021A1515011870), NSFC (Grant no. 61771199), Zhuhai Industry Core and Key Technology Research Project (No. 2220004002350), and the Science and Technology Foundation of Guangzhou Huangpu Development District (Grant 2020GH17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Peng, F., Xue, Y., Hao, N., Jin, L. (2023). Scene Table Structure Recognition with Segmentation and Key Point Collaboration. In: Fink, G.A., Jain, R., Kise, K., Zanibbi, R. (eds) Document Analysis and Recognition - ICDAR 2023. ICDAR 2023. Lecture Notes in Computer Science, vol 14188. Springer, Cham. https://doi.org/10.1007/978-3-031-41679-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41679-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41678-1

  • Online ISBN: 978-3-031-41679-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics