Abstract
Fake news detection is a real problem, especially in social media. The untruth news dispreads very quickly and brings huge damage. This paper is devoted to proposing a topic modeling method that allows for comparing tweets, which is one of the stages of fake news detection. Our method, named Content Weighted Topic (CWT), is based on applying WordNet. Experiments showed that our method is better than the well-known Latent Dirichlet Allocation (LDA) algorithm regarding topic coherence measure. Our CWT method assigns topics for tweets that are more consistent than topics assigned by the LDA algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mimno, D., Wallach, H., Talley, E., Leenders, M., McCallum, A.: Optimizing semantic coherence in topic models. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (2011)
Gupta, A., Lamba, H., Kumaraguru, P.: 1.00 per RT #BostonMarathon #PrayForBoston: analyzing fake content on Twitter. In: 2013 APWG eCrime Researchers Summit (2013)
McCornack, S.A., Morrison, K., Paik, J.E., Wisner, A.M., Zhu, X.: Information manipulation theory 2. J. Lang. Soc. Psychol. 33, 348–377 (2014)
Zhou, X., Zafarani, R.: A survey of fake news. ACM Comput. Surv. 53, 1–40 (2020)
Nguyen, H.T., Duong, P.H., Cambria, E.: Learning short-text semantic similarity with word embeddings and external knowledge sources. Knowl.-Based Syst. 182, 104842 (2019)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, Cambridge (2001)
Stoyanova, L., Wallace, W.: Topic Modelling, Sentiment Analysis and Classification of Short-form Text, p. 159 (2019)
Negara, E.S., Triadi, D., Andryani, R.: Topic modelling Twitter data with latent Dirichlet allocation method. In: 2019 International Conference on Electrical Engineering and Computer Science (ICECOS) (2019)
Ferrugento, A., Oliveira, H.G., Alves, A., Rodrigues, F.: Can topic modelling benefit from word sense information? In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), Portoro, Slovenia (2016)
Yang, S., Huang, G., Ofoghi, B., Yearwood, J.: Short text similarity measurement using context-aware weighted biterms. Concurr. Comput.: Pract. Exp. 34 (2020)
Quezada, M.: Jkalyana@Ucsd.Edu, Bpoblete@Dcc.Uchile.Cl and Gert@Ece.Ucsd.Edu, Twitter News Dataset, figshare (2016)
Kalyanam, J., Quezada, M., Poblete, B., Lanckriet, G.: Prediction and characterization of high-activity events in social media triggered by real-world news. PLoS ONE 11, e0166694 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bezerra, J.F.R., Pietranik, M., Nguyen, T.T., Kozierkiewicz, A. (2023). A New Topic Modeling Method for Tweets Comparison. In: Nguyen, N.T., et al. Computational Collective Intelligence. ICCCI 2023. Lecture Notes in Computer Science(), vol 14162. Springer, Cham. https://doi.org/10.1007/978-3-031-41456-5_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-41456-5_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-41455-8
Online ISBN: 978-3-031-41456-5
eBook Packages: Computer ScienceComputer Science (R0)