[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A New Topic Modeling Method for Tweets Comparison

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2023)

Abstract

Fake news detection is a real problem, especially in social media. The untruth news dispreads very quickly and brings huge damage. This paper is devoted to proposing a topic modeling method that allows for comparing tweets, which is one of the stages of fake news detection. Our method, named Content Weighted Topic (CWT), is based on applying WordNet. Experiments showed that our method is better than the well-known Latent Dirichlet Allocation (LDA) algorithm regarding topic coherence measure. Our CWT method assigns topics for tweets that are more consistent than topics assigned by the LDA algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mimno, D., Wallach, H., Talley, E., Leenders, M., McCallum, A.: Optimizing semantic coherence in topic models. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (2011)

    Google Scholar 

  2. Gupta, A., Lamba, H., Kumaraguru, P.: 1.00 per RT #BostonMarathon #PrayForBoston: analyzing fake content on Twitter. In: 2013 APWG eCrime Researchers Summit (2013)

    Google Scholar 

  3. McCornack, S.A., Morrison, K., Paik, J.E., Wisner, A.M., Zhu, X.: Information manipulation theory 2. J. Lang. Soc. Psychol. 33, 348–377 (2014)

    Article  Google Scholar 

  4. Zhou, X., Zafarani, R.: A survey of fake news. ACM Comput. Surv. 53, 1–40 (2020)

    Article  Google Scholar 

  5. Nguyen, H.T., Duong, P.H., Cambria, E.: Learning short-text semantic similarity with word embeddings and external knowledge sources. Knowl.-Based Syst. 182, 104842 (2019)

    Article  Google Scholar 

  6. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. In: Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, Cambridge (2001)

    Google Scholar 

  7. Stoyanova, L., Wallace, W.: Topic Modelling, Sentiment Analysis and Classification of Short-form Text, p. 159 (2019)

    Google Scholar 

  8. Negara, E.S., Triadi, D., Andryani, R.: Topic modelling Twitter data with latent Dirichlet allocation method. In: 2019 International Conference on Electrical Engineering and Computer Science (ICECOS) (2019)

    Google Scholar 

  9. Ferrugento, A., Oliveira, H.G., Alves, A., Rodrigues, F.: Can topic modelling benefit from word sense information? In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), Portoro, Slovenia (2016)

    Google Scholar 

  10. Yang, S., Huang, G., Ofoghi, B., Yearwood, J.: Short text similarity measurement using context-aware weighted biterms. Concurr. Comput.: Pract. Exp. 34 (2020)

    Google Scholar 

  11. Quezada, M.: Jkalyana@Ucsd.Edu, Bpoblete@Dcc.Uchile.Cl and Gert@Ece.Ucsd.Edu, Twitter News Dataset, figshare (2016)

    Google Scholar 

  12. Kalyanam, J., Quezada, M., Poblete, B., Lanckriet, G.: Prediction and characterization of high-activity events in social media triggered by real-world news. PLoS ONE 11, e0166694 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrianna Kozierkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bezerra, J.F.R., Pietranik, M., Nguyen, T.T., Kozierkiewicz, A. (2023). A New Topic Modeling Method for Tweets Comparison. In: Nguyen, N.T., et al. Computational Collective Intelligence. ICCCI 2023. Lecture Notes in Computer Science(), vol 14162. Springer, Cham. https://doi.org/10.1007/978-3-031-41456-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-41456-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-41455-8

  • Online ISBN: 978-3-031-41456-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics