[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Adapting YOLOv8 as a Vision-Based Animal Detection System to Facilitate Herding

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2023)

Abstract

In this work, the YOLOv8 model is adapted to a specific problem in order to increase its performance. Thus, a vision-based system is developed to provide perceptual information to a robot to detect animals in the environment and to be able to perform herding tasks. For this purpose, a dataset is created by selecting animal images from the public AP10K dataset, as well as sheep images acquired by a camera attached to a 4-legged robot. Three different configurations of YOLOv8 are considered: nano, medium and extra-large, trained on the COCO dataset. Its fine-tuning with the animal image dataset shows an improvement in performance achieved not only from the point of view of the robot, but also from the point of view of a drone or a person. The best results are obtained with the YOLOv8 medium configuration when it is trained with the dataset that includes images of the robot’s view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aquilani, C., Confessore, A., Bozzi, R., Sirtori, F., Pugliese, C.: Review: precision livestock farming technologies in pasture-based livestock systems. Animal 16(1), 100429 (2022). https://doi.org/10.1016/j.animal.2021.100429

    Article  Google Scholar 

  2. Brown, J., Qiao, Y., Clark, C., Lomax, S., Rafique, K., Sukkarieh, S.: Automated aerial animal detection when spatial resolution conditions are varied. Comput. Electron. Agric. 193, 106689 (2022). https://doi.org/10.1016/j.compag.2022.106689

    Article  Google Scholar 

  3. Riego del Castillo, V., Sánchez-González, L., Fernández-Robles, L., Castejón-Limas, M., Rebollar, R.: Estimation of lamb weight using transfer learning and regression. In: García Bringas, P., et al. (eds.) 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. LNCS, vol. 531, pp. 23–30. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-18050-7_3

  4. Riego del Castillo, V., Sánchez-González, L., Campazas-Vega, A., Strisciuglio, N.: Vision-based module for herding with a sheepdog robot. Sensors 22(14), 5321 (2022). https://doi.org/10.3390/s22145321

  5. Herlin, A., Brunberg, E., Hultgren, J., Högberg, N., Rydberg, A., Skarin, A.: Animal welfare implications of digital tools for monitoring and management of cattle and sheep on pasture. Animals 11(3), 829 (2021). https://doi.org/10.3390/ani11030829

    Article  Google Scholar 

  6. Jocher, G., Ayush, C., Qiu, J.: Ultralytics Yolov8. https://docs.ultralytics.com/

  7. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  8. Meena, S.D., Agilandeeswari, L.: Smart animal detection and counting framework for monitoring livestock in an autonomous unmanned ground vehicle using restricted supervised learning and image fusion. Neural Process. Lett. 53(2), 1253–1285 (2021). https://doi.org/10.1007/s11063-021-10439-4

    Article  Google Scholar 

  9. Odintsov Vaintrub, M., Levit, H., Chincarini, M., Fusaro, I., Giammarco, M., Vignola, G.: Review: precision livestock farming, automats and new technologies: possible applications in extensive dairy sheep farming. Animal 15(3), 100143 (2021). https://doi.org/10.1016/j.animal.2020.100143

    Article  Google Scholar 

  10. Porto, S., Arcidiacono, C., Giummarra, A., Anguzza, U., Cascone, G.: Localisation and identification performances of a real-time location system based on ultra wide band technology for monitoring and tracking dairy cow behaviour in a semi-open free-stall barn. Comput. Electron. Agric. 108, 221–229 (2014). https://doi.org/10.1016/j.compag.2014.08.001

    Article  Google Scholar 

  11. Rejeb, A., Abdollahi, A., Rejeb, K., Treiblmaier, H.: Drones in agriculture: a review and bibliometric analysis. Comput. Electron. Agric. 198, 107017 (2022). https://doi.org/10.1016/j.compag.2022.107017

    Article  Google Scholar 

  12. Rivas, A., Chamoso, P., González-Briones, A., Corchado, J.M.: Detection of cattle using drones and convolutional neural networks. Sensors 18(7), 2048 (2018). https://doi.org/10.3390/s18072048

    Article  Google Scholar 

  13. Spedener, M., Tofastrud, M., Devineau, O., Zimmermann, B.: Microhabitat selection of free-ranging beef cattle in south-boreal forest. Appl. Anim. Behav. Sci. 213, 33–39 (2019). https://doi.org/10.1016/j.applanim.2019.02.006

    Article  Google Scholar 

  14. Stygar, A.H., et al.: A systematic review on commercially available and validated sensor technologies for welfare assessment of dairy cattle. Front. Vet. Sci. 8, 634338 (2021). https://doi.org/10.3389/fvets.2021.634338

    Article  Google Scholar 

  15. Tedeschi, L.O., Greenwood, P.L., Halachmi, I.: Advancements in sensor technology and decision support intelligent tools to assist smart livestock farming. J. Animal Sci. 99(2), skab038 (2021). https://doi.org/10.1093/jas/skab038

  16. Wang, D., Shao, Q., Yue, H.: Surveying wild animals from satellites, manned aircraft and unmanned aerial systems (UASS): a review. Remote Sens. 11(11), 1308 (2019)

    Article  Google Scholar 

  17. Yu, H., Xu, Y., Zhang, J., Zhao, W., Guan, Z., Tao, D.: AP-10K: a benchmark for animal pose estimation in the wild. In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2) (2021)

    Google Scholar 

  18. Zhu, W.X., Guo, Y.Z., Jiao, P.P., Ma, C.H., Chen, C.: Recognition and drinking behaviour analysis of individual pigs based on machine vision. Livestock Sci. 205, 129–136 (2017). https://doi.org/10.1016/j.livsci.2017.09.003

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of Grant TED2021-132356B-I00 funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR”. Virginia Riego would like to thank Universidad de León for its funding support for her doctoral studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Sánchez-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riego del Castillo, V., García Sierra, J.F., Sánchez-González, L. (2023). Adapting YOLOv8 as a Vision-Based Animal Detection System to Facilitate Herding. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2023. Lecture Notes in Computer Science(), vol 14001. Springer, Cham. https://doi.org/10.1007/978-3-031-40725-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40725-3_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40724-6

  • Online ISBN: 978-3-031-40725-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics