[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Daily Accumulative Photovoltaic Energy Prediction Using Hybrid Intelligent Model

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2023)

Abstract

Nowadays, there is an increase in the use of renewable energies to fight against climatic change. One of the most popular energy is solar one, which could have two different produced energies: thermal and electrical. The case study used in this research is an installation located in the University of A Coruña, in Ferrol, and it is a photovoltaic array with five rows of 12 solar panels each one, with a total peak power of 12,9 kW. The installation is correctly oriented to the South, with an inclination of 35\(^\circ \) to achieve the theoretical performance of 99,82%. The model created in this research predicts the accumulated daily energy produced by the installation base on the solar hours predicted by the meteorological service. The other inputs of the model are the real solar hours and the energy produced the day before the prediction. A hybrid model is created by dividing the dataset with a clustering technique to create groups. Then, each cluster trains a regression algorithm to increase the global prediction performance. K-Means are used to create the clusters and Artificial Neural Networks, Support Vector Machines for Regression and Polynomial Regression are used to create the local models for clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Meteogalicia. observation. meteorological network (2021). https://www.meteogalicia.gal. Accessed 16 Apr 2023

  2. Aláiz-Moretón, H., Castejón-Limas, M., Casteleiro-Roca, J.L., Jove, E., Fernández Robles, L., Calvo-Rolle, J.L.: A fault detection system for a geothermal heat exchanger sensor based on intelligent techniques. Sensors 19(12), 2740 (2019)

    Article  Google Scholar 

  3. Barrera, J.M., Reina, A., Maté, A., Trujillo, J.C.: Solar energy prediction model based on artificial neural networks and open data. Sustainability 12(17), 6915 (2020). https://doi.org/10.3390/su12176915

    Article  Google Scholar 

  4. Bishop, C.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, New York (2006)

    Google Scholar 

  5. del Brío, B., Molina, A.: Redes neuronales y sistemas borrosos. Ra-Ma (2006)

    Google Scholar 

  6. Casteleiro-Roca, J.L., et al.: Solar thermal collector output temperature prediction by hybrid intelligent model for smartgrid and smartbuildings applications and optimization. Appl. Sci. 10(13), 4644 (2020). https://doi.org/10.3390/app10134644

    Article  Google Scholar 

  7. Casteleiro-Roca, J.L., et al.: Short-term energy demand forecast in hotels using hybrid intelligent modeling. Sensors 19(11), 2485 (2019). https://doi.org/10.3390/s19112485

    Article  Google Scholar 

  8. Fernandez-Serantes, L., Casteleiro-Roca, J., Calvo-Rolle, J.: Hybrid intelligent system for a half-bridge converter control and soft switching ensurement. Revista Iberoamericana de Automática e Informática industrial (2022)

    Google Scholar 

  9. Galipienso, M., Quevedo, M., Pardo, O., Ruiz, F., Ortega, M.: Inteligencia artificial. Modelos, técnicas y áreas de aplicación. Editorial Paraninfo (2003)

    Google Scholar 

  10. González, J., Hernando, V.: Redes neuronales artificiales: fundamentos, modelos y aplicaciones. RA-MA (2000)

    Google Scholar 

  11. Gonzalez-Cava, J.M., et al.: Machine learning techniques for computer-based decision systems in the operating theatre: application to analgesia delivery. Logic J. IGPL 29(2), 236–250 (2020). https://doi.org/10.1093/jigpal/jzaa049

    Article  MathSciNet  Google Scholar 

  12. Harston, A.M.C., Pap, R.: Handbook of Neural Computing Applications. Elsevier, Amsterdam (2014)

    Google Scholar 

  13. Heiberger, R., Neuwirth, E.: Polynomial regression. In: R Through Excel, pp. 269–284. Use R, Springer, New York (2009). https://doi.org/10.1007/978-1-4419-0052-4_11

  14. Joselin Herbert, G., Iniyan, S., Sreevalsan, E., Rajapandian, S.: A review of wind energy technologies. Renew. Sustain. Energy Rev. 11(6), 1117–1145 (2007). https://doi.org/10.1016/j.rser.2005.08.004

    Article  Google Scholar 

  15. Jove, E., et al.: Attempts prediction by missing data imputation in engineering degree. In: Pérez García, H., Alfonso-Cendón, J., Sánchez González, L., Quintián, H., Corchado, E. (eds.) SOCO/CISIS/ICEUTE -2017. AISC, vol. 649, pp. 167–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67180-2_16

    Chapter  Google Scholar 

  16. Jove, E., Casteleiro-Roca, J.L., Quintiá, H., Méndez-Pérez, J.A., Calvo-Rolle, J.L.: Anomaly detection based on intelligent techniques over a bicomponent production plant used on wind generator blades manufacturing. Revista Iberoamericana de Automática e Informática industrial 17(1), 84–93 (2020). https://doi.org/10.4995/riai.2019.11055

    Article  Google Scholar 

  17. Jove, E., Casteleiro-Roca, J.L., Quintián, H., Méndez-Pérez, J.A., Calvo-Rolle, J.L.: Virtual sensor for fault detection, isolation and data recovery for bicomponent mixing machine monitoring, vol. 30, pp. 671–687. Vilnius University Institute of Mathematics and Informatics (2019)

    Google Scholar 

  18. Jove, E., Casteleiro-Roca, J.L., Quintián, H., Simić, D., Méndez-Pérez, J.A., Luis Calvo-Rolle, J.: Anomaly detection based on one-class intelligent techniques over a control level plant. Logic J. IGPL 28(4), 502–518 (2020)

    Article  MathSciNet  Google Scholar 

  19. Jove, E., et al.: Hybrid intelligent model to predict the remifentanil infusion rate in patients under general anesthesia. Logic J. IGPL 29(2), 193–206 (2020). https://doi.org/10.1093/jigpal/jzaa046

    Article  MathSciNet  Google Scholar 

  20. Khandakar, A., et al.: Machine learning based photovoltaics (PV) power prediction using different environmental parameters of Qatar. Energies 12(14), 2782 (2019). https://doi.org/10.3390/en12142782

  21. López, R., Fernández, J.: Las Redes Neuronales Artificiales. Netbiblo (2008)

    Google Scholar 

  22. MacQueen, J.: Some methods for classification and analysis of multivariate observations, pp. 281–297 (1967)

    Google Scholar 

  23. Moody, J., Darken, C.: Fast Learning in Networks of Locally-Tuned Processing Units, vol. 1 (1989). https://doi.org/10.1162/neco.1989.1.2.281

  24. Orallo, J., Quintana, M., Ramírez, C.: Introducción a la minería de datos (2004)

    Google Scholar 

  25. Porras, S., Jove, E., Baruque, B., Calvo-Rolle, J.L.: A comparative analysis of intelligent techniques to predict energy generated by a small wind turbine from atmospheric variables. Logic J. IGPL (2022). https://doi.org/10.1093/jigpal/jzac031

    Article  Google Scholar 

  26. Rahul, S.G., Kavitha, P., Dhivyasri, G.: Prediction of electricity load using artificial neural network for technology tower block of vit university. Int. J. Appl. Eng. Res. 12(84), 7717–7723 (2017)

    Google Scholar 

  27. Simić, S., Banković, Z., Villar, J.R., Simić, D., Simić, S.D.: A hybrid fuzzy clustering approach for diagnosing primary headache disorder. Logic J. IGPL 29(2), 220–235 (2020). https://doi.org/10.1093/jigpal/jzaa048

    Article  MathSciNet  Google Scholar 

  28. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, Heidelberg (2008)

    Google Scholar 

  29. Viñuela, P., León, I.: Redes de neuronas artificiales: un enfoque práctico. Pearson Educación - Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  30. Wang, L., Wu, J.: Neural network ensemble model using PPR and LS-SVR for stock et forecasting (2012). https://doi.org/10.1007/978-3-642-24728-6_1

  31. Wu, X.: Optimal designs for segmented polynomial regression models and web-based implementation of optimal design software. State University of New York at Stony Brook, Stony Brook (2007)

    Google Scholar 

  32. Wu, Z., Li, Q., Xia, X.: Multi-timescale forecast of solar irradiance based on multi-task learning and echo state network approaches. IEEE Trans. Ind. Inf. 17(1), 300–310 (2021). https://doi.org/10.1109/TII.2020.2987096

    Article  Google Scholar 

  33. Zayas-Gato, F., et al.: Intelligent model for active power prediction of a small wind turbine. Logic J. IGPL (2022). https://doi.org/10.1093/jigpal/jzac040

    Article  Google Scholar 

  34. Zhang, Z., Chan, S.: On kernel selection of multivariate local polynomial modelling and its application to image smoothing and reconstruction. J. Signal Process. Syst. 64(3), 361–374 (2011). https://doi.org/10.1007/s11265-010-0495-4

    Article  Google Scholar 

  35. Zidan, A., El-Saadany, E.F.: Distribution system reconfiguration for energy loss reduction considering the variability of load and local renewable generation. Energy 59, 698–707 (2013). https://doi.org/10.1016/j.energy.2013.06.061

    Article  Google Scholar 

Download references

Acknowledgement

Míriam Timiraos’s research was supported by the “Xunta de Galicia” (Regional Government of Galicia) through grants to industrial PhD (http://gain.xunta.gal/), under the “Doutoramento Industrial 2022” grant with reference: 04_IN606D_2022_2692965.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Míriam Timiraos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Díaz-Longueira, A., Timiraos, M., Pérez, J.A.M., Casteleiro-Roca, JL., Jove, E. (2023). Daily Accumulative Photovoltaic Energy Prediction Using Hybrid Intelligent Model. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2023. Lecture Notes in Computer Science(), vol 14001. Springer, Cham. https://doi.org/10.1007/978-3-031-40725-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40725-3_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40724-6

  • Online ISBN: 978-3-031-40725-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics