[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Companion Classification Losses for Regression Problems

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2023)

Abstract

By their very nature, regression problems can be transformed into classification problems by discretizing their target variable. Within this perspective, in this work we investigate the possibility of improving the performance of deep machine learning models in regression scenarios through a training strategy that combines different classification and regression objectives. In particular, we train deep neural networks using the mean squared error along with categorical cross-entropy and the novel Fisher loss as companion losses. Finally, we will compare experimentally the results of these companion loss methods with the ones obtained using the standard mean squared loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 67.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 84.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/, software available from tensorflow.org

  2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  3. Caruana, R.: Multitask learning. Mach. Learn. 28, 41–75 (1997)

    Article  Google Scholar 

  4. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 1–27 (2011)

    Article  Google Scholar 

  5. Chen, J., Cheng, L., Yang, X., Liang, J., Quan, B., Li, S.: Joint learning with both classification and regression models for age prediction. In: Journal of Physics: Conference Series, vol. 1168, p. 032016. IOP Publishing (2019)

    Google Scholar 

  6. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras

  7. Christensen, R.H.B.: ordinal-regression models for ordinal data. R Packag. Version 28, 2015 (2015)

    Google Scholar 

  8. Diaz-Vico, D., Dorronsoro, J.R.: Deep least squares fisher discriminant analysis. IEEE Trans. Neural Netw. Learn. Syst. 31(8), 2752–2763 (2019)

    Article  MathSciNet  Google Scholar 

  9. Díaz-Vico, D., Fernández, A., Dorronsoro, J.R.: Companion losses for deep neural networks. In: Sanjurjo González, H., Pastor López, I., García Bringas, P., Quintián, H., Corchado, E. (eds.) HAIS 2021. LNCS (LNAI), vol. 12886, pp. 538–549. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86271-8_45

    Chapter  Google Scholar 

  10. Díaz-Vico, D., Fernández, A., Dorronsoro, J.R.: Companion losses for ordinal regression. In: Garcia Bringas, P., et al. (eds.) Hybrid Artificial Intelligent Systems. HAIS 2022. LNCS, vol. 13469, pp. 211–222. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15471-3_19

  11. Glocker, B., Pauly, O., Konukoglu, E., Criminisi, A.: Joint classification-regression forests for spatially structured multi-object segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 870–881. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_62

    Chapter  Google Scholar 

  12. Liu, M., Zhang, J., Adeli, E., Shen, D.: Deep multi-task multi-channel learning for joint classification and regression of brain status. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 3–11. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_1

    Chapter  Google Scholar 

  13. Liu, M., Zhang, J., Adeli, E., Shen, D.: Joint classification and regression via deep multi-task multi-channel learning for Alzheimer’s disease diagnosis. IEEE Trans. Biomed. Eng. 66(5), 1195–1206 (2018)

    Article  Google Scholar 

  14. Paszke, A., et al.: Automatic differentiation in pytorch. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019)

    Google Scholar 

  15. Schulter, S., Leistner, C., Wohlhart, P., Roth, P.M., Bischof, H.: Alternating regression forests for object detection and pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), December 2013

    Google Scholar 

  16. Schulter, S., Leistner, C., Wohlhart, P., Roth, P.M., Bischof, H.: Accurate object detection with joint classification-regression random forests. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2014

    Google Scholar 

  17. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945). https://www.jstor.org/stable/3001968

  18. Zhang, Z., Dai, G., Xu, C., Jordan, M.I.: Regularized discriminant analysis, ridge regression and beyond. J. Mach. Learn. Res. 11, 2199–2228 (2010)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the European Regional Development Fund and the Spanish State Research Agency of the Ministry of Economy, Industry, and Competitiveness under the project PID2019-106827GB-I00. They also thank the support of the UAM–ADIC Chair for Data Science and Machine Learning and gratefully acknowledge the use of the facilities of Centro de Computación Científica (CCC) at UAM. They finally acknowledge the financial support of the Department of Education of the Basque Government under the grant PRE_2022_1_0103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aitor Sánchez-Ferrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sánchez-Ferrera, A., Dorronsoro, J.R. (2023). Companion Classification Losses for Regression Problems. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2023. Lecture Notes in Computer Science(), vol 14001. Springer, Cham. https://doi.org/10.1007/978-3-031-40725-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40725-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40724-6

  • Online ISBN: 978-3-031-40725-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics