[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Derived Sequential Pattern Mining for E-Commerce Recommendations in Multiple Sources

  • Conference paper
  • First Online:
Information Integration and Web Intelligence (iiWAS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14416))

  • 633 Accesses

Abstract

Existing multi-source E-Commerce recommendation algorithms, such as Multi-source Category Extension system (ECCF19), use item categories to improve the quality of the user-item rating matrix input to the collaborative filtering (CF) process for better recommendations. HPCRec18 model derives a consequential bond between clicks and purchases to predict preferences for users with no purchase history, whereas HSPRec19 uses sequential purchase patterns from historical data as well as consequential bond in mined patterns to improve the user-item matrix for CF. None of these systems use both the historical and item description data to address the CF limitations.

This paper proposes a Multi-source Category Extended Historical Sequential Pattern Recommendation System (MCE-HSPRec), an extension of the HSPRec19 system to increase recommendation coverage and alleviate new item problem by enriching item category information. MCE-HSPRec derives enriched category-based user profiles by analyzing item categories that are frequently purchased together. Results show that HSPRec achieves 36.64% more prediction coverage compared to HSPRec. MCE-HSPRec also obtains high precision and recall values (0.94716, 0.94781) in comparison to HSPRec19 (0.8985, 0.90002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Aggarwal, C.C.: An introduction to recommender systems. In: Aggarwal, C.C. (ed.) Recommender Systems, pp. 1–28. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29659-3_1

    Chapter  Google Scholar 

  2. Anwar, T., Uma, V.: CD-SPM: cross-domain book recommendation using sequential pattern mining and rule mining. J. King Saud Univ.-Comput. Inf. Sci. 34(3), 793–800 (2022)

    Google Scholar 

  3. Bhatta, R., Ezeife, C.I., Butt, M.N.: Mining sequential patterns of historical purchases for e-commerce recommendation. In: Ordonez, C., Song, I.-Y., Anderst-Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK 2019. LNCS, vol. 11708, pp. 57–72. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27520-4_5

    Chapter  Google Scholar 

  4. Brown, S.: Amazon sellers beg and bribe customers to delete negative reviews (2021). https://www.cnet.com/tech/services-and-software/

  5. Ezeife, C.I., Aravindan, V., Chaturvedi, R.: Mining integrated sequential patterns from multiple databases. Int. J. Data Warehous. Min. (IJDWM) 16(1), 1–21 (2020)

    Article  Google Scholar 

  6. Ghazanfar, M.A., Prugel-Bennett, A.: A scalable, accurate hybrid recommender system. In: 2010 Third International Conference on Knowledge Discovery and Data Mining, pp. 94–98. IEEE (2010)

    Google Scholar 

  7. Gupta, S., Dave, M.: An overview of recommendation system: methods and techniques. In: Sharma, H., Govindan, K., Poonia, R.C., Kumar, S., El-Medany, W.M. (eds.) Advances in Computing and Intelligent Systems. AIS, pp. 231–237. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0222-4_20

    Chapter  Google Scholar 

  8. Hug, N.: Surprise: a Python library for recommender systems. J. Open Source Softw. 5(52), 2174 (2020)

    Article  Google Scholar 

  9. Kechinov, M.: Ecommerce events history in electronics store (2019). https://www.kaggle.com/mkechinov/ecommerce-events-history-in-electronics-store

  10. Kumar, N.P., Fan, Z.: Hybrid user-item based collaborative filtering. Procedia Comput. Sci. 60, 1453–1461 (2015)

    Article  Google Scholar 

  11. Mauro, N., Ardissono, L.: Extending a tag-based collaborative recommender with co-occurring information interests. In: Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization, pp. 181–190 (2019)

    Google Scholar 

  12. Nilashi, M., Ibrahim, O., Bagherifard, K.: A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques. Expert Syst. Appl. 92, 507–520 (2018)

    Article  Google Scholar 

  13. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Analysis of recommendation algorithms for e-commerce. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, pp. 158–167 (2000)

    Google Scholar 

  14. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_9

    Chapter  Google Scholar 

  15. Schoinas, I., Tjortjis, C.: MuSIF: a product recommendation system based on multi-source implicit feedback. In: MacIntyre, J., Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds.) Artificial Intelligence Applications and Innovations. IFIP Advances in Information and Communication Technology, vol. 559, pp. 660–672. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19823-7_55

    Chapter  Google Scholar 

  16. Shu, J., Shen, X., Liu, H., Yi, B., Zhang, Z.: A content-based recommendation algorithm for learning resources. Multimedia Syst. 24(2), 163–173 (2018)

    Article  Google Scholar 

  17. Uddin, B.: Multi-data source recommendations with derived sequential pattern mining. Electronic Theses and Dissertations. 9046 (2023). https://scholar.uwindsor.ca/etd/9046

  18. Xiao, Y., Ezeife, C.I.: E-commerce product recommendation using historical purchases and clickstream data. In: Ordonez, C., Bellatreche, L. (eds.) DaWaK 2018. LNCS, vol. 11031, pp. 70–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98539-8_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Chaturvedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaturvedi, R., Ezeife, C.I., Uddin, M.B. (2023). Using Derived Sequential Pattern Mining for E-Commerce Recommendations in Multiple Sources. In: Delir Haghighi, P., et al. Information Integration and Web Intelligence. iiWAS 2023. Lecture Notes in Computer Science, vol 14416. Springer, Cham. https://doi.org/10.1007/978-3-031-48316-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-48316-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-48315-8

  • Online ISBN: 978-3-031-48316-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics