Abstract
In combustion reactions, organic fuels (containing Carbon compounds) generally release a combination of signatures of heat, light, gases, and soot particulates.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Z. Wang, X. He, J.-X. Wang et al., Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines. Energy Convers. Manag. 51, 908–917 (2010)
Y. Wang, Y. Yu, X. Zhu, Z. Zhang, Pattern recognition for measuring the flame stability of gas-fired combustion based on the image processing technology. Fuel 270, 117486 (2020)
S. Sarkar, K.G. Lore, S. Sarkar et al., Early detection of combustion instability from hi-speed flame images via deep learning and symbolic time series analysis, in Annual Conference of the PHM Society (2015)
D.T. Gottuk, J.A. Lynch, S.L. Rose-Pehrsson et al., Video image fire detection for shipboard use. Fire Saf. J. 41, 321–326 (2006)
T.X. Tung, J.-M. Kim, An effective four-stage smoke-detection algorithm using video images for early fire-alarm systems. Fire Saf. J. 46, 276–282 (2011)
Z. Wang, T. Zhang, X. Huang, Predicting real-time fire heat release rate by flame images and deep learning, in Proceedings of the Combustion Institute (2022)
T. Zhang, Z. Wang, Y. Zeng et al., Building artificial-intelligence digital fire (AID-Fire) system: a real-scale demonstration. J. Build. Eng. 62, 105363 (2022)
Z. Wang, T. Zhang, X. Wu, X. Huang, Predicting transient building fire based on external smoke images and deep learning. J. Build. Eng. 47, 103823 (2022). https://doi.org/10.1016/j.jobe.2021.103823
J. Wang, W.C. Tam, Y. Jia et al., P-Flash–A machine learning-based model for flashover prediction using recovered temperature data. Fire Saf. J. 122, 103341 (2021). https://doi.org/10.1016/j.firesaf.2021.103341
M.Z. Naser, C. Lautenberger, E. Kuligowski, Special Issue on “Smart Systems in Fire Engineering.” Fire Technol. 57, 2737–2740 (2021). https://doi.org/10.1007/s10694-021-01196-w
H. Mozaffari, Y. Li, Y. Ko et al, Detecting flashover in a room fire based on the sequence of thermal infrared images using convolutional neural networks. Canadian AI 2022 (2022)
Y. Li, Y. Ko, W. Lee, RGB image-based hybrid model for automatic prediction of flashover in compartment fires. Fire Saf. J. 132, 103629 (2022)
B. Kim, J. Lee, A video-based fire detection using deep learning models. Appl. Sci. 9, 2862 (2019)
F.N. Simon, G.D. Rork, Ionization-type smoke detectors. Rev. Sci. Instrum. 47, 74–80 (1976)
K. Lee, Y.-S. Shim, Y.G. Song et al., Highly sensitive sensors based on metal-oxide nanocolumns for fire detection. Sensors 17, 303 (2017)
(2023) ORRProtection Co. https://www.orrprotection.com/detection/video-smoke-detection
K. Muhammad, J. Ahmad, I. Mehmood et al., Convolutional neural networks based fire detection in surveillance videos. IEEE Access 6, 18174–18183 (2018)
G. Yadav, V. Gupta, V. Gaur, M. Bhattacharya, Optimized flame detection using image processing based techniques. Indian J. Comput. Sci. Eng. 3, 202–211 (2012)
N. Rahmatov, A. Paul, F. Saeed, H. Seo, Realtime fire detection using CNN and search space navigation. J. Real-Time Image Proc. 18, 1331–1340 (2021)
J.A. Milke, Monitoring multiple aspects of fire signatures for discriminating fire detection. Fire Technol. 35, 195–209 (1999)
W. Kim, Y. Sivathanu, J.P. Gore, Characterization of spectral radiation intensities from standard test fires for fire detection. NIST Special Publication SP 91–106 (2001)
B.C.H.R. Hagen, J.A. Milke, The use of gaseous fire signatures as a mean to detect fires. Fire Saf. J. 34, 55–67 (2000)
L. Chen, P. Mao, Y. Zhang et al., Experimental study on smoke characteristics of bifurcated tunnel fire. Tunn. Undergr. Space Technol. 98, 103295 (2020)
Y. Yong, Q. Tian, L.U. Gang et al., Recent advances in flame tomography. Chin. J. Chem. Eng. 20, 389–399 (2012)
C. Yuan, Z. Liu, Y. Zhang, Vision-based forest fire detection in aerial images for firefighting using UAVs, in 2016 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE (2016), pp. 1200–1205
J.-H. Kim, S. Jo, B.Y. Lattimer, Feature selection for intelligent firefighting robot classification of fire, smoke, and thermal reflections using thermal infrared images. J. Sensors (2016)
R. Méndez-Rial, Souto-Lَpez ء, Garcيa-Dيaz A, MWIR infrared gating imaging with uncooled PbSe FPAs for surveillance applications, in Unconventional Optical Imaging. SPIE (2018), pp. 564–569
J.-H. Kim, B. Keller, B.Y. Lattimer, Sensor fusion based seek-and-find fire algorithm for intelligent firefighting robot, in 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE (2013), pp. 1482–1486
K. Jindal, A. Wang, D. Thakur et al, Design and deployment of an autonomous unmanned ground vehicle for urban firefighting scenarios (2021). arXiv preprint arXiv:210703582
J.W. Starr, B.Y. Lattimer, Evaluation of navigation sensors in fire smoke environments. Fire Technol. 50, 1459–1481 (2014)
J.W. Starr, Rangefinding in fire smoke environments (2016)
J.-H. Kim, J.W. Starr, B.Y. Lattimer, Firefighting robot stereo infrared vision and radar sensor fusion for imaging through smoke. Fire Technol. 51, 823–845 (2015)
A.M. Fernandes, A.B. Utkin, A.V. Lavrov, R.M. Vilar, Neural network based recognition of smoke signatures from lidar signals. Neural Process. Lett. 19, 175–189 (2004)
A.B. Utkin, A. Fernandes, F. Simُes et al., Feasibility of forest-fire smoke detection using lidar. Int. J. Wildland Fire 12, 159–166 (2003)
A.S. Olagoke, H. Ibrahim, S.S. Teoh, Literature survey on multi-camera system and its application. IEEE Access 8, 172892–172922 (2020)
V. Sherstjuk, M. Zharikova, I. Sokol, Forest fire-fighting monitoring system based on UAV team and remote sensing, in 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO). IEEE (2018), pp. 663–668
N. Lazaros, G.C. Sirakoulis, A. Gasteratos, Review of stereo vision algorithms: from software to hardware. Int. J. Optomechatronics 2, 435–462 (2008)
R. Szeliski, Computer Vision: Algorithms and Applications (Springer Nature, 2022)
R.C. Gonzalez, Digital Image Processing (Pearson Education India, 2009)
N. O’Mahony, S. Campbell, A. Carvalho et al., Deep learning vs. traditional computer vision. in Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference (CVC), vol. 1 1. (Springer, 2020), pp. 128–144
A. Garcia-Garcia, S. Orts-Escolano, S. Oprea et al., A review on deep learning techniques applied to semantic segmentation (2017). arXiv preprint arXiv:170406857
T.-Y. Lin, M. Maire, S. Belongie et al., Microsoft coco: common objects in context, in European Conference on Computer Vision (Springer, 2014), pp. 740–755
Z.-Q. Zhao, P. Zheng, S. Xu, X. Wu, Object detection with deep learning: a review. IEEE Trans. Neural Netw. Learn. Syst. 30, 3212–3232 (2019)
Y. LeCun, Yoshua bengio, and geoffrey hinton. Deep Learn. Nat. 521, 436–444 (2015)
T.-H. Chen, P.-H. Wu, Y.-C. Chiou, An early fire-detection method based on image processing, in 2004 International Conference on Image Processing, 2004. ICIP’04. IEEE (2004), pp. 1707–1710
S. Dara, P. Tumma, Feature extraction by using deep learning: a survey, in 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA). IEEE (2018), pp. 1795–1801
H. Ali, M. Sharif, M. Yasmin et al., A survey of feature extraction and fusion of deep learning for detection of abnormalities in video endoscopy of gastrointestinal-tract. Artif. Intell. Rev. 53, 2635–2707 (2020)
L. Juan, O. Gwun, A comparison of sift, pca-sift and surf. Int. J. Image Process. (IJIP) 3, 143–152 (2009)
M.A. Chandra, S.S. Bedi, Survey on SVM and their application in image classification. Int. J. Inf. Technol. 13, 1–11 (2021)
A. Gaur, A. Singh, A.A. Kumar et al., Video flame and smoke based fire detection algorithms: a literature review. Fire Technol. 56, 1943–1980 (2020). https://doi.org/10.1007/s10694-020-00986-y
D. Han, B. Lee, Flame and smoke detection method for early real-time detection of a tunnel fire. Fire Saf. J. 44, 951–961 (2009)
K. Dimitropoulos, P. Barmpoutis, N. Grammalidis, Spatio-temporal flame modeling and dynamic texture analysis for automatic video-based fire detection. IEEE Trans. Circuits Syst. Video Technol. 25, 339–351 (2014)
R. Chi, Z. Lu, Q. Ji, Real-time multi-feature based fire flame detection in video. IET Image Proc. 11, 31–37 (2017)
K. O’Shea, R. Nash, An introduction to convolutional neural networks (2015). arXiv preprint arXiv:151108458
L. Alzubaidi, J. Zhang, A.J. Humaidi et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 1–74 (2021)
Q. Zhang, J. Xu, L. Xu, H. Guo, Deep convolutional neural networks for forest fire detection. in 2016 International Forum on Management, Education and Information Technology Application (Atlantis Press, 2016), pp. 568–575
S. Khan, K. Muhammad, S. Mumtaz et al., Energy-efficient deep CNN for smoke detection in foggy IoT environment. IEEE Internet Things J. 6, 9237–9245 (2019)
F. Abid, A survey of machine learning algorithms based forest fires prediction and detection systems. Fire Technol. 57, 559–590 (2021)
L. He, X. Gong, S. Zhang et al., Efficient attention based deep fusion CNN for smoke detection in fog environment. Neurocomputing 434, 224–238 (2021)
F. Zhang, W. Qin, Y. Liu et al., A dual-channel convolution neural network for image smoke detection. Multim. Tools Appl. 79, 34587–34603 (2020)
Y. Hu, X. Lu, Real-time video fire smoke detection by utilizing spatial-temporal ConvNet features. Multim. Tools Appl. 77, 29283–29301 (2018)
M. Yin, C. Lang, Z. Li et al., Recurrent convolutional network for video-based smoke detection. Multim. Tools Appl. 78, 237–256 (2019)
A. Filonenko, L. Kurnianggoro, K.-H. Jo, Comparative study of modern convolutional neural networks for smoke detection on image data, in 2017 10th International Conference on Human System Interactions (HSI). IEEE (2017), pp. 64–68
D. Shen, X. Chen, M. Nguyen, W.Q. Yan, Flame detection using deep learning, in 2018 4th International Conference on Control, Automation and Robotics (ICCAR). IEEE (2018), pp. 416–420
Z. Xu, W. Wanguo, L. Xinrui et al., Flame and smoke detection in substation based on wavelet analysis and convolution neural network, in Proceedings of the 2019 3rd International Conference on Innovation in Artificial Intelligence (2019), pp. 248–252
Z. Zhong, M. Wang, Y. Shi, W. Gao, A convolutional neural network-based flame detection method in video sequence. SIViP 12, 1619–1627 (2018)
A. Filonenko, L. Kurnianggoro, K.H. Jo, Smoke detection on video sequences using convolutional and recurrent neural networks, in International Conference on Computational Collective Intelligence (Springer, 2017), pp. 558–566
H. Zhao, J. Shi, X. Qi et al., Pyramid scene parsing network, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 2881–2890
L.-C. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking atrous convolution for semantic image segmentation (2017). arXiv preprint arXiv:170605587
P. Hu, F. Caba, O. Wang et al., Temporally distributed networks for fast video semantic segmentation. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp. 8818–8827
W. Krüll, R. Tobera, I. Willms et al., Early forest fire detection and verification using optical smoke, gas and microwave sensors. Procedia Eng. 45, 584–594 (2012)
R. Gade, T.B. Moeslund, Thermal cameras and applications: a survey. Mach. Vis. Appl. 25, 245–262 (2014)
K. Ribeiro-Gomes, D. Hernلndez-Lَpez, J.F. Ortega et al., Uncooled thermal camera calibration and optimization of the photogrammetry process for UAV applications in agriculture. Sensors 17, 2173 (2017)
W.H. Maes, A.R. Huete, K. Steppe, Optimizing the processing of UAV-based thermal imagery. Remote Sens. 9, 476 (2017)
L. Deng, Q. Chen, Y. He et al., Fire detection with infrared images using cascaded neural network. J. Algorithms Comput. Technol. 13, 1748302619895433 (2019)
L. YunChang, Y. ChunYu, Z. YongMing, Nighttime video smoke detection based on active infrared video image, in 2010 International Conference on Electrical and Control Engineering. IEEE (2010), pp. 1359–1362
B.U. Tِreyin, Fire detection algorithms using multimodal signal and image analysis (2009)
O. Günay, K. Taşdemir, B.U. Töreyin, A.E. Çetin, Video based wildfire detection at night. Fire Saf. J. 44, 860–868 (2009)
S. Verstockt, R. Dekeerschieter, A. Vanoosthuyse, et al., Video fire detection using non-visible light, in Proceedings of the 6th International Seminar on Fire and Explosion Hazards (2010)
S. Verstockt, A. Vanoosthuyse, S. Van Hoecke, et al., Multi-sensor fire detection by fusing visual and non-visual flame features, in International Conference on Image and Signal Processing. Springer (2010), pp. 333–341
I. Bosch, S. Gomez, L. Vergara, J. Moragues, Infrared image processing and its application to forest fire surveillance, in 2007 IEEE Conference on Advanced Video and Signal Based Surveillance. IEEE (2007), pp. 283–288
I. Bosch, S. Gomez, R. Molina, R. Miralles, Object discrimination by infrared image processing, in International Work-Conference on the Interplay Between Natural and Artificial Computation. Springer (2009), pp. 30–40
S. Verstockt, N. Tilley, B. Merci et al., Future directions for video fire detection. in 10th International Symposium on Fire Safety Science. International Association for Fire Safety Science (IAFSS) (2011), pp. 529–542
J.R. Martيnez-de Dios, L. Merino, F. Caballero, A. Ollero, Automatic forest-fire measuring using ground stations and unmanned aerial systems. Sensors 11, 6328–6353 (2011)
R. Zhang, J. Bin, Z. Liu, E. Blasch, WGGAN: a wavelet-guided generative adversarial network for thermal image translation, in Generative Adversarial Networks for Image-to-Image Translation (Elsevier, 2021), pp. 313–327
Y. Li, Y. Ko, Development of a hybrid algorithm to predict room fire flashovers based on vision data, NRC Report A1-020368.1. 53 (2021)
Y.H. Habiboğlu, O. Günay, A.E. Çetin, Covariance matrix-based fire and flame detection method in video. Mach. Vis. Appl. 23, 1103–1113 (2012)
L. Zhang, M. Wang, Y. Fu, Y. Ding, A forest fire recognition method using UAV images based on transfer learning. Forests 13, 975 (2022)
J.C. Myburgh, C. Mouton, M.H. Davel, Tracking translation invariance in CNNs, in Southern African Conference for Artificial Intelligence Research (Springer, 2021), pp. 282–295
C. Mouton, J.C. Myburgh, M.H. Davel, Stride and translation invariance in CNNs, in Southern African Conference for Artificial Intelligence Research (Springer, 2021, pp. 267–281
L. Taylor, G. Nitschke, Improving deep learning with generic data augmentation, in 2018 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE (2018), pp. 1542–1547
M.H. Mozaffari, W.-S. Lee, Encoder-decoder CNN models for automatic tracking of tongue contours in real-time ultrasound data. Methods 179, 26–36 (2020)
D. Justus, J. Brennan, S. Bonner, A.S. McGough, Predicting the computational cost of deep learning models, in 2018 IEEE International Conference on Big Data (Big Data). IEEE (2018), pp. 3873–3882
N.C. Thompson, K. Greenewald, K. Lee, G.F. Manso, The computational limits of deep learning (2020). arXiv preprint arXiv:200705558
V. Monga, Y. Li, Y.C. Eldar, Algorithm unrolling: interpretable, efficient deep learning for signal and image processing. IEEE Signal Process. Mag. 38, 18–44 (2021)
M. Hamed Mozaffari, W.-S. Lee, Domain adaptation for ultrasound tongue contour extraction using transfer learning: a deep learning approach. J. Acoustical Soc. Am. 146, EL431–EL437 (2019)
M.H. Mozaffari, W.-S. Lee, Semantic segmentation with peripheral vision, in International Symposium on Visual Computing (2020), pp. 421–429
A.G. Howard, M. Zhu, B. Chen et al., Mobilenets: efficient convolutional neural networks for mobile vision applications (2017). arXiv preprint arXiv:170404861
A. Saiyeda, M.A. Mir, Cloud computing for deep learning analytics: a survey of current trends and challenges. Int. J. Adv. Res. Comput. Sci. 8 (2017)
H. Dong, A. Supratak, L. Mai et al., Tensorlayer: a versatile library for efficient deep learning development, in Proceedings of the 25th ACM International Conference on Multimedia (2017), pp. 1201–1204
A. Akbari, M. Awais, M. Bashar, J. Kittler, How does loss function affect generalization performance of deep learning? Application to human age estimation, in International Conference on Machine Learning. PMLR (2021), pp. 141–151
Q. Wang, Y. Ma, K. Zhao, Y. Tian, A comprehensive survey of loss functions in machine learning. Ann. Data Sci. 9, 187–212 (2022)
M.H. Mozaffari, L.-L. Tay, Convolutional neural networks for Raman spectral analysis of chemical mixtures. in 2021 5th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI). IEEE (2021), pp. 1–6
H. Harkat, J. Nascimento, A. Bernardino, Fire segmentation using a DeepLabv3+ architecture. in Image and signal processing for remote sensing XXVI. SPIE (2020), pp. 134–145
P. Barmpoutis, K. Dimitropoulos, K. Kaza, N. Grammalidis, Fire detection from images using faster R-CNN and multidimensional texture analysis, in ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2019), pp. 8301–8305
M.H. Mozaffari, Y. Li, Y. Ko, Real-time detection and forecast of flashovers by the visual room fire features using deep convolutional neural networks. J. Build. Eng. 64, 105674 (2023)
A. Mikołajczyk, M. Grochowski, Data augmentation for improving deep learning in image classification problem, in 2018 international interdisciplinary PhD workshop (IIPhDW). IEEE (2018), pp 117–122
S. Geetha, C.S. Abhishek, C.S. Akshayanat, Machine vision based fire detection techniques: a survey. Fire Technol. 57, 591–623 (2021)
G. Xu, Y. Zhang, Q. Zhang et al., Deep domain adaptation based video smoke detection using synthetic smoke images. Fire Saf. J. 93, 53–59 (2017)
G. Xu, Q. Zhang, D. Liu et al., Adversarial adaptation from synthesis to reality in fast detector for smoke detection. IEEE Access 7, 29471–29483 (2019)
(2007) Rapid fire phenomena. fire tactics magazine
J. Wu, Y. Zhang, X. Gou et al., Experimental research on gas fire backdraft phenomenon. Procedia Environ. Sci. 11, 1542–1549 (2011)
A.C. Fernandez-Pello, On fire ignition. Fire Saf. Sci. 10, 25–42 (2011)
N. Chen, Smoke explosion in severally ventilation limited compartment fires (2012)
W.P. Behnke, Predicting flash fire protection of clothing from laboratory tests using second-degree burn to rate performance. Fire Mater. 8, 57–63 (1984)
D. Mackay, T. Barber, E. Leonardi, CFD model of a specific fire scenario (2007)
V. Babrauskas, Estimating room flashover potential. Fire Technol. 16, 94–103 (1980)
R.D. Peacock, P.A. Reneke, R.W. Bukowski, V. Babrauskas, Defining flashover for fire hazard calculations. Fire Saf. J. 32, 331–345 (1999). https://doi.org/10.1016/S0379-7112(03)00027-4
G.E. Gorbett, R. Hopkins, P. Kennedy (2007) The current knowledge and training regarding backdraft, flashover, and other rapid fire progression phenomena, in Annual Meeting of the National Fire Protection Association, Boston, MA
W.C. Tam, E.Y. Fu, R. Peacock et al., Generating synthetic sensor data to facilitate machine learning paradigm for prediction of building fire hazard. Fire Technol. (2020). https://doi.org/10.1007/s10694-020-01022-9
W.C. Tam, E.Y. Fu, P. Reneke et al., A generic flashover prediction model for residential buildings using graph neural network, in Proceedings of the 12th Asia-Oceania Symposium on Fire Science and Technology. AOSFST December (2021), pp. 7–9
E.W.M. Lee, R.K.K. Yuen, S.M. Lo et al., A novel artificial neural network fire model for prediction of thermal interface location in single compartment fire. Fire Saf. J. 39, 67–87 (2004). https://doi.org/10.1016/S0379-7112(03)00092-4
E.W.M. Lee, Y.Y. Lee, C.P. Lim, C.Y. Tang, Application of a noisy data classification technique to determine the occurrence of flashover in compartment fires. Adv. Eng. Inform. 20, 213–222 (2006)
E.W.M. Lee, R.K.K. Yuen, S.M. Lo, K.C. Lam, Probabilistic inference with maximum entropy for prediction of flashover in single compartment fire. Adv. Eng. Inform. 16, 179–191 (2002)
A. Dexters, R.R. Leisted, R. Van Coile et al., Testing for knowledge: application of machine learning techniques for prediction of flashover in a 1/5 scale ISO 13784–1 enclosure. Fire Mater. 45, 708–719 (2021)
R.R. Leisted, M.X. Sّrensen, G. Jomaas, Experimental study on the influence of different thermal insulation materials on the fire dynamics in a reduced-scale enclosure. Fire Saf. J. 93, 114–125 (2017)
A. Dexters, R.R. Leisted, R. Van Coile et al., Testing for knowledge: maximising information obtained from fire tests by using machine learning techniques, in Interflam 2019. Egham, United Kingdom (2019), pp. 515–527
S.A. Yusuf, A.A. Alshdadi, M.O. Alassafi et al., Predicting catastrophic temperature changes based on past events via a CNN-LSTM regression mechanism, in Neural Computing and Applications (2021), pp. 1–16
E.Y. Fu, W.C. Tam, J. Wang et al., Predicting flashover occurrence using surrogate temperature data, in Proceedings of the AAAI Conference on Artificial Intelligence (2021), pp. 14785–14794
J. Francis, A.P. Chen, Observable characteristics of flashover. Fire Saf. J. 51, 42–52 (2012)
A.L. Huyen, K. Yun, S. De Baun et al., Dynamic fire and smoke detection and classification for flashover prediction 1173502, 1 (2021). https://doi.org/10.1117/12.2588175
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition (2014). arXiv preprint arXiv:14091556
M.H. Mozaffari, Y. Li, Y. Ko, Detecting flashover in a room fire based on the sequence of thermal infrared images using convolutional neural networks, in Proceedings of the Canadian Conference on Artificial Intelligence (2022). https://doi.org/10.21428/594757db.7c1cd4e1
K. Yun, J. Bustos, T. Lu, Predicting rapid fire growth (flashover) using conditional generative adversarial networks, in IS and T International Symposium on Electronic Imaging Science and Technology 2018 (2018), pp. 2751–2757.https://doi.org/10.2352/ISSN.2470-1173.2018.09.SRV-127
D. Cortés, D. Gil, J. Azorيn et al., A review of modelling and simulation methods for flashover prediction in confined space fires. Appl. Sci. 10, 5609 (2020)
H. Mozaffari, Y. Li, Y. Ko, Real-time assistance to firefighters using convolutional neural networks, in Celebrating the Success of Women in STEM Symposium: Pushing the Frontiers of Research Through Collaboration 2016 (2022)
K. Yun, K. Yu, J. Osborne et al., Improved visible to IR image transformation using synthetic data augmentation with cycle-consistent adversarial networks, in Pattern Recognition and Tracking XXX. SPIE (2019), p. 1099502
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Ko, Y., Hamed Mozaffari, M., Li, Y. (2024). Fire and Smoke Image Recognition. In: Huang, X., Tam, W.C. (eds) Intelligent Building Fire Safety and Smart Firefighting. Digital Innovations in Architecture, Engineering and Construction. Springer, Cham. https://doi.org/10.1007/978-3-031-48161-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-48161-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-48160-4
Online ISBN: 978-3-031-48161-1
eBook Packages: EngineeringEngineering (R0)