[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Discovering Densest Subgraph over Heterogeneous Information Networks

  • Conference paper
  • First Online:
Databases Theory and Applications (ADC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14386))

Included in the following conference series:

  • 604 Accesses

Abstract

Densest Subgraph Discovery (DSD) is a fundamental and challenging problem in the field of graph mining in recent years. The DSD aims to determine, given a graph G, the subgraph with the maximum density according to the specified definition. The majority of current research focuses on identifying DSD in homogeneous information networks. Nevertheless, these techniques cannot be applied directly in Heterogeneous Information Networks (HINs) since the semantics of paths are not considered. This limits the application of these approaches in certain fields, as many graphs, e.g., the DBLP dataset, comprise of many types of edges. In order to remedy this research need, this paper proposes approaches for resolving the DSD issue over HINs.

By examining numerous linkage paths between two vertices, we characterize the relationship between two objects of the same type using the concept of meta-path. We further build two new HIN models and provide DSD techniques that perform well in large networks. In addition, comprehensive experiments on various HIN datasets demonstrate the effectiveness and efficiency of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 47.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.cse.psu.edu/~kxm85/software/GTgraph/.

References

  1. Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and MapReduce. In: PVLDB, pp. 454–46 (2012)

    Google Scholar 

  2. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049 (2003)

    Google Scholar 

  3. Cantador, I., Brusilovsky, P., Kuflik, T.: 2nd workshop on information heterogeneity and fusion in recommender systems (HetRec 2011). In: Proceedings of the 5th ACM Conference on Recommender Systems, RecSys 2011, New York, NY, USA (2011)

    Google Scholar 

  4. Charikar, M.: Greedy approximation algorithms for finding dense components in a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 84–95. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44436-X_10

    Chapter  MATH  Google Scholar 

  5. Chen, J., Saad, Y.: Dense subgraph extraction with application to community detection. TKDE 24(7), 1216–1230 (2012)

    Google Scholar 

  6. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and distance queries via 2-hop labels. SIAM J. Comput. 32(5), 1338–1355 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dongen, S.M.V.: Graph clustering by flow simulation. Ph.D. thesis, University of Utrecht (2000)

    Google Scholar 

  8. Epasto, A., Lattanzi, S., Sozio, M.: Efficient densest subgraph computation in evolving graphs. In: WWW, pp. 300–310 (2015)

    Google Scholar 

  9. Fang, Y., Yang, Y., Zhang, W., Lin, X., Ca, X.: Effective and efficient community search over large heterogeneous information networks. Proc. VLDB Endow. 13(6), 854–867 (2020)

    Article  Google Scholar 

  10. Fratkin, E., Naughton, B.T., Brutlag, D.L., Batzoglou, S.: MotifCut: regulatory motifs finding with maximum density subgraphs. Bioinformatics 22(14), e150–e157 (2006)

    Article  Google Scholar 

  11. Goldberg, A.V.: Finding a maximum density subgraph. UC Berkeley (1984)

    Google Scholar 

  12. Harper, F.M., Konstan, J.A.: The MovieLens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5, 19:1–19:19 (2015). https://doi.org/10.1145/2827872

  13. He, R., McAuley, J.: Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering. In: WWW (2016). https://cseweb.ucsd.edu/jmcauley/datasets.html#amazon_reviews

  14. Heineman, G., Pollice, G., Selkow, S.: Network flow algorithms. Algorithms in a Nutshell (2008)

    Google Scholar 

  15. Huang, Z., Zheng, Y., Cheng, R., Sun, Y., Mamoulis, N., Li, X.: Meta structure: computing relevance in large heterogeneous information networks. In: KDD, pp. 1595–1604 (2016)

    Google Scholar 

  16. Schloss Dagstuhl - Leibniz Center for Informatics.: DBLP computer science bibliography (2019). http://dblp.uni-trier.de/xml

  17. Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02927-1_50

    Chapter  Google Scholar 

  18. McAuley, J., Targett, C., Shi, J., van den Hengel, A.: Image-based recommendations on styles and substitutes. In: SIGIR (2015). https://cseweb.ucsd.edu/jmcauley/datasets.html#amazon_reviews

  19. Qin, L., Li, R.H., Chang, L., Zhang, C.: Locally densest subgraph discover. In: KDD, pp. 965–974 (2015)

    Google Scholar 

  20. S. M. of Science Innovation, the Regional Government of Madrid: International Workshop on Information Heterogeneity and Fusion in Recommender Systems (2011). http://www.lastfm.com

  21. Scott, J.: Social Network Analysis: A Handbook. Sage Publications (2000)

    Google Scholar 

  22. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: meta path-based top-k similarity search in heterogeneous information networks. PVLDB 4(11), 992–1003 (2011)

    Google Scholar 

  23. Tang, J., Qu, M., Mei, Q.: Predictive text embedding through large-scale heterogeneous text networks. In: SIGKDD (2015)

    Google Scholar 

  24. Tsourakakis, C., Bonchi, F., Gionis, A., Gullo, F., Tsiarli, M.: Denser than the densest subgraph: extracting optimal quasi-cliques with quality guarantees. In: KDD, pp. 104–112 (2013)

    Google Scholar 

  25. Yan, Y., Wang, Q., Liu, L.: Latent influence based self-attention framework for heterogeneous network embedding. IEICE Trans. Inf. Syst. 105, 1335–1339 (2022)

    Article  Google Scholar 

  26. Yang, D., Zhang, D., Yu, Z., Yu, Z.: Fine-grained preference-aware location search leveraging crowdsourced digital footprints from LBSNs. In: ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 8–12 (2013)

    Google Scholar 

  27. Zhang, B., Nie, T., Shen, D., Kou, Y., Yu, G., Zhou, Z.: A graph clustering algorithm for citation networks. In: Li, F., Shim, K., Zheng, K., Liu, G. (eds.) APWeb 2016. LNCS, vol. 9932, pp. 414–418. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45817-5_37

    Chapter  Google Scholar 

  28. Zhang, X., Xie, H., Lui, J.C.S.: Improving bandit learning via heterogeneous information networks: algorithms and applications. ACM Trans. Knowl. Discov. Data 16, 1–25 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjie Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, H., Wang, K., Zhang, W., Wen, D., Wang, X., Zhang, Y. (2024). Discovering Densest Subgraph over Heterogeneous Information Networks. In: Bao, Z., Borovica-Gajic, R., Qiu, R., Choudhury, F., Yang, Z. (eds) Databases Theory and Applications. ADC 2023. Lecture Notes in Computer Science, vol 14386. Springer, Cham. https://doi.org/10.1007/978-3-031-47843-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47843-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47842-0

  • Online ISBN: 978-3-031-47843-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics