Abstract
We present a modular and multi-level framework for the differential diagnosis of malignant melanoma. Our framework integrates contextual information and evidence at the lesion, patient, and population levels, enabling decision-making at each level. We introduce an anatomic-site aware masked transformer, which effectively models the patient context by considering all lesions in a patient, which can be variable in count, and their site of incidence. Additionally, we incorporate patient metadata via learnable demographics embeddings to capture population statistics. Through extensive experiments, we explore the influence of specific information on the decision-making process and examine the tradeoff in metrics when considering different types of information. Validation results using the SIIM-ISIC 2020 dataset indicate including the lesion context with location and metadata improves specificity by \(17.15\%\) and \(7.14\%\), respectively, while enhancing balanced accuracy. The code is available at https://github.com/narenakash/meldd.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arnold, M., et al.: Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 158(5), 495–503 (2022)
Grant-Kels, J.M., et al.: The misdiagnosis of malignant melanoma. J. Am. Acad. Dermatol. 40(4), 539–548 (1999)
Nachbar, F., et al.: The ABCD rule of dermatoscopy. high prospective value in the diagnosis of doubtful melanocytic skin lesions. J. Am. Acad. Dermatol. 30(4), 551–559 (1994)
Argenziano, G., et al.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD Rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch. Dermatol. 134(12), 1563–1570 (1998)
Grob, J.J., et al.: The ‘Ugly Duckling’ Sign: identification of the common characteristics of Nevi in an Individual as a basis for melanoma screening. Arch. Dermatol. 134(1), 103–104 (1998)
Wazaefi, Y., et al.: Evidence of a limited intra-individual diversity of nevi: intuitive perception of dominant clusters is a crucial step in the analysis of nevi by dermatologists. J. Investig. Dermatol. 133(10), 2355–2361 (2013)
Gaudy-Marqueste, C., et al.: Ugly Duckling Sign as a major factor of efficiency in melanoma detection. JAMA Dermatol. 153(4), 279–284 (2017)
Gachon, J., et al.: First prospective study of the recognition process of melanoma in dermatological practice. Arch. Dermatol. 141(4), 434–438 (2005)
Jensen, J.D., et al.: The ABCDEF Rule: combining the “ABCDE Rule”and the “Ugly Duckling Sign”in an Effort to Improve Patient Self-Screening Examinations. J. Clin. Aesthetic Dermatol. 8(2), 15 (2015)
Yuan, T., et al.: Race-, age-, and anatomic site-specific gender differences in cutaneous melanoma suggest differential mechanisms of early-and late-onset melanoma. Int. J. Environ. Res. Public Health 16(6), 908 (2019)
Kawahara, J., et al.: Seven-point checklist and skin lesion classification using multitask multimodal neural nets. IEEE J. Biomed. Health Inform. 23(2), 538–546 (2019)
Barata, C., et al.: Explainable skin lesion diagnosis using taxonomies. Pattern Recogn. 110, 107413 (2021)
González-Díaz, I.: DermaKNet: incorporating the knowledge of dermatologists to convolutional neural networks for skin lesion diagnosis. IEEE J. Biomed. Health Inform. 23(2), 547–559 (2019)
Yang, J., et al.: Clinical skin lesion diagnosis using representations inspired by dermatologist criteria. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1258–1266 (2018)
Liu, Z., et al.: CI-Net: clinical-inspired network for automated skin lesion recognition. IEEE Trans. Med. Imaging 42(3), 619–632 (2023)
Yu, Z., et al.: End-to-End ugly duckling sign detection for melanoma identification with transformers. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 176–184. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_17
Marghboob, A.A., et al.: The complexity of diagnosing melanoma. J. Investig. Dermatol. 129(1), 11–13 (2009)
Yan, Y., Kawahara, J., Hamarneh, G.: Melanoma recognition via visual attention. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 793–804. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_62
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Cancer.Net Melanoma Guide: Statistics by American Society of Clinical Oncology. https://www.cancer.net/cancer-types/melanoma.(Accessed 30 June 2023)
Rotemberg, V., et al.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Sci. Data 8(34) (2021)
He, K., et al.: deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Kingma, D.P., et al.: Adam: a method for stochastic optimization. arXiv preprint. arXiv:1412.6980 (2014)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Halligan, S., et al.: Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: a discussion and proposal for an alternative approach. European Radiol. 25(4) (2015)
Youden, W. J.: Index for Rating Diagnostic Tests. Cancer 3(1) (1950)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Akash R J, N., Kaushik, A., Sivaswamy, J. (2023). Evidence-Driven Differential Diagnosis of Malignant Melanoma. In: Celebi, M.E., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops . MICCAI 2023. Lecture Notes in Computer Science, vol 14393. Springer, Cham. https://doi.org/10.1007/978-3-031-47401-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-47401-9_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47400-2
Online ISBN: 978-3-031-47401-9
eBook Packages: Computer ScienceComputer Science (R0)