[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Evidence-Driven Differential Diagnosis of Malignant Melanoma

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops (MICCAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14393))

  • 1145 Accesses

Abstract

We present a modular and multi-level framework for the differential diagnosis of malignant melanoma. Our framework integrates contextual information and evidence at the lesion, patient, and population levels, enabling decision-making at each level. We introduce an anatomic-site aware masked transformer, which effectively models the patient context by considering all lesions in a patient, which can be variable in count, and their site of incidence. Additionally, we incorporate patient metadata via learnable demographics embeddings to capture population statistics. Through extensive experiments, we explore the influence of specific information on the decision-making process and examine the tradeoff in metrics when considering different types of information. Validation results using the SIIM-ISIC 2020 dataset indicate including the lesion context with location and metadata improves specificity by \(17.15\%\) and \(7.14\%\), respectively, while enhancing balanced accuracy. The code is available at https://github.com/narenakash/meldd.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 47.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, M., et al.: Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 158(5), 495–503 (2022)

    Article  Google Scholar 

  2. Grant-Kels, J.M., et al.: The misdiagnosis of malignant melanoma. J. Am. Acad. Dermatol. 40(4), 539–548 (1999)

    Article  Google Scholar 

  3. Nachbar, F., et al.: The ABCD rule of dermatoscopy. high prospective value in the diagnosis of doubtful melanocytic skin lesions. J. Am. Acad. Dermatol. 30(4), 551–559 (1994)

    Google Scholar 

  4. Argenziano, G., et al.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD Rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch. Dermatol. 134(12), 1563–1570 (1998)

    Article  Google Scholar 

  5. Grob, J.J., et al.: The ‘Ugly Duckling’ Sign: identification of the common characteristics of Nevi in an Individual as a basis for melanoma screening. Arch. Dermatol. 134(1), 103–104 (1998)

    Article  Google Scholar 

  6. Wazaefi, Y., et al.: Evidence of a limited intra-individual diversity of nevi: intuitive perception of dominant clusters is a crucial step in the analysis of nevi by dermatologists. J. Investig. Dermatol. 133(10), 2355–2361 (2013)

    Article  Google Scholar 

  7. Gaudy-Marqueste, C., et al.: Ugly Duckling Sign as a major factor of efficiency in melanoma detection. JAMA Dermatol. 153(4), 279–284 (2017)

    Article  Google Scholar 

  8. Gachon, J., et al.: First prospective study of the recognition process of melanoma in dermatological practice. Arch. Dermatol. 141(4), 434–438 (2005)

    Article  Google Scholar 

  9. Jensen, J.D., et al.: The ABCDEF Rule: combining the “ABCDE Rule”and the “Ugly Duckling Sign”in an Effort to Improve Patient Self-Screening Examinations. J. Clin. Aesthetic Dermatol. 8(2), 15 (2015)

    Google Scholar 

  10. Yuan, T., et al.: Race-, age-, and anatomic site-specific gender differences in cutaneous melanoma suggest differential mechanisms of early-and late-onset melanoma. Int. J. Environ. Res. Public Health 16(6), 908 (2019)

    Article  Google Scholar 

  11. Kawahara, J., et al.: Seven-point checklist and skin lesion classification using multitask multimodal neural nets. IEEE J. Biomed. Health Inform. 23(2), 538–546 (2019)

    Article  Google Scholar 

  12. Barata, C., et al.: Explainable skin lesion diagnosis using taxonomies. Pattern Recogn. 110, 107413 (2021)

    Article  Google Scholar 

  13. González-Díaz, I.: DermaKNet: incorporating the knowledge of dermatologists to convolutional neural networks for skin lesion diagnosis. IEEE J. Biomed. Health Inform. 23(2), 547–559 (2019)

    Article  Google Scholar 

  14. Yang, J., et al.: Clinical skin lesion diagnosis using representations inspired by dermatologist criteria. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1258–1266 (2018)

    Google Scholar 

  15. Liu, Z., et al.: CI-Net: clinical-inspired network for automated skin lesion recognition. IEEE Trans. Med. Imaging 42(3), 619–632 (2023)

    Article  Google Scholar 

  16. Yu, Z., et al.: End-to-End ugly duckling sign detection for melanoma identification with transformers. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 176–184. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_17

    Chapter  Google Scholar 

  17. Marghboob, A.A., et al.: The complexity of diagnosing melanoma. J. Investig. Dermatol. 129(1), 11–13 (2009)

    Article  Google Scholar 

  18. Yan, Y., Kawahara, J., Hamarneh, G.: Melanoma recognition via visual attention. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 793–804. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_62

    Chapter  Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  20. Cancer.Net Melanoma Guide: Statistics by American Society of Clinical Oncology. https://www.cancer.net/cancer-types/melanoma.(Accessed 30 June 2023)

  21. Rotemberg, V., et al.: A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Sci. Data 8(34) (2021)

    Google Scholar 

  22. He, K., et al.: deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  23. Kingma, D.P., et al.: Adam: a method for stochastic optimization. arXiv preprint. arXiv:1412.6980 (2014)

  24. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  25. Halligan, S., et al.: Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: a discussion and proposal for an alternative approach. European Radiol. 25(4) (2015)

    Google Scholar 

  26. Youden, W. J.: Index for Rating Diagnostic Tests. Cancer 3(1) (1950)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naren Akash R J .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akash R J, N., Kaushik, A., Sivaswamy, J. (2023). Evidence-Driven Differential Diagnosis of Malignant Melanoma. In: Celebi, M.E., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 Workshops . MICCAI 2023. Lecture Notes in Computer Science, vol 14393. Springer, Cham. https://doi.org/10.1007/978-3-031-47401-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47401-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47400-2

  • Online ISBN: 978-3-031-47401-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics