Abstract
This work presents BundleSeg, a reliable, reproducible, and fast method for extracting white matter pathways. The proposed method combines an iterative registration procedure to a recently developed precise streamline search algorithm that enables efficient segmentation of streamlines without the need for tractogram clustering or simplifying assumptions. We show that BundleSeg achieves improved repeatability and reproducibility than state-of-the-art segmentation methods, with significant speed improvements. The enhanced precision and reduced variability in extracting white matter connections offer a valuable tool for neuroinformatic studies, increasing the sensitivity and specificity of tractography-based studies of white matter pathways.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)
Bertò, G., et al.: Classifyber, a robust streamline-based linear classifier for white matter bundle segmentation. Neuroimage 224, 117402 (2021)
Catani, M., et al.: Symmetries in human brain language pathways correlate with verbal recall. Proc. Natl. Acad. Sci. 104(43), 17163–17168 (2007)
Descoteaux, M., Deriche, R., Knosche, T.R., Anwander, A.: Deterministic and probabilistic tractography based on complex Fibre orientation distributions. IEEE Trans. Med. Imaging 28(2), 269–286 (2008)
Fonov, V., et al.: Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54(1), 313–327 (2011)
Garyfallidis, E., et al.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinformatics 8, 8 (2014)
Garyfallidis, E., Brett, M., Correia, M.M., Williams, G.B., Nimmo-Smith, I.: Quickbundles, a method for tractography simplification. Front. Neurosci. 6, 175 (2012)
Garyfallidis, E., et al.: Recognition of white matter bundles using local and global streamline-based registration and clustering. Neuroimage 170, 283–295 (2018)
Garyfallidis, E., Ocegueda, O., Wassermann, D., Descoteaux, M.: Robust and efficient linear registration of white-matter fascicles in the space of streamlines. Neuroimage 117, 124–140 (2015)
Girard, G., Whittingstall, K., Deriche, R., Descoteaux, M.: Towards quantitative connectivity analysis: reducing tractography biases. Neuroimage 98, 266–278 (2014)
O’Donnell, L.J., Westin, C.F.: Automatic tractography segmentation using a high-dimensional white matter atlas. IEEE Trans. Med. Imaging 26(11), 1562–1575 (2007)
Oishi, K., et al.: Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. Neuroimage 43(3), 447–457 (2008)
Olivetti, E., Berto, G., Gori, P., Sharmin, N., Avesani, P.: Comparison of distances for supervised segmentation of white matter tractography. In: 2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI), pp. 1–4. IEEE (2017)
Rheault, F.: Analyse et Reconstruction de Faisceaux de la Matière Blanche. Université de Sherbrooke, Computer Science (2020)
Rheault, F., et al.: The influence of regions of interest on tractography virtual dissection protocols: general principles to learn and to follow. Brain Struct. Funct. 227(6), 2191–2207 (2022)
Schilling, K.G., et al.: Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset? Neuroimage 243, 118502 (2021)
St-Onge, E., Garyfallidis, E., Collins, D.L.: Fast streamline search: an exact technique for diffusion MRI tractography. Neuroinformatics 20(4), 1093–1104 (2022)
Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the Fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4), 1459–1472 (2007)
Tournier, J.D., et al.: Mrtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116137 (2019)
Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)
Visser, E., Nijhuis, E.H., Buitelaar, J.K., Zwiers, M.P.: Partition-based mass clustering of tractography streamlines. Neuroimage 54(1), 303–312 (2011)
Wakana, S., et al.: Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage 36(3), 630–644 (2007)
Wassermann, D., et al.: On describing human white matter anatomy: the white matter query language. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 647–654. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_81
Wasserthal, J., Neher, P., Maier-Hein, K.H.: TractSeg-fast and accurate white matter tract segmentation. Neuroimage 183, 239–253 (2018)
Zhang, F., Karayumak, S.C., Hoffmann, N., Rathi, Y., Golby, A.J., O’Donnell, L.J.: Deep white matter analysis (DeepWMA): fast and consistent tractography segmentation. Med. Image Anal. 65, 101761 (2020)
Zhang, Y., et al.: Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. Neuroimage 52(4), 1289–1301 (2010)
Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Conflict of Interest
We have no conflict of interest to declare.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
St-Onge, E., Schilling, K.G., Rheault, F. (2023). BundleSeg: A Versatile, Reliable and Reproducible Approach to White Matter Bundle Segmentation. In: Karaman, M., Mito, R., Powell, E., Rheault, F., Winzeck, S. (eds) Computational Diffusion MRI. CDMRI 2023. Lecture Notes in Computer Science, vol 14328. Springer, Cham. https://doi.org/10.1007/978-3-031-47292-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-47292-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-47291-6
Online ISBN: 978-3-031-47292-3
eBook Packages: Computer ScienceComputer Science (R0)