Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Chen, T., et al.: Knowledge-embedded routing network for scene graph generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6163–6171 (2019)
Cui, Z., et al.: Context-dependent diffusion network for visual relationship detection. In: Proceedings of the ACM International Conference on Multimedia, pp. 1475–1482 (2018)
Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)
Lin, X., et al.: GPS-net: graph property sensing network for scene graph generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3746–3753 (2020)
Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
Pennington, J., et al.: GloVe: global vectors for word representation. In: Proceedings of the conference on Empirical Methods in Natural Language Processing, pp. 1532–1543 (2014)
Qi, M., et al.: Attentive relational networks for mapping images to scene graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3957–3966 (2019)
Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. Proceedings of the Advances in Neural Information Processing Systems, vol. 28, pp. 91–99 (2015)
Sharifzadeh, S., et al.: Classification by attention: scene graph classification with prior knowledge. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 5025–5033 (2021)
Speer, R., Havasi, C.: ConceptNet 5: a large semantic network for relational knowledge. In: Gurevych, I., Kim, J. (eds.) The People’s Web Meets NLP. TANLP, pp. 161–176. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35085-6_6
Suhail, M., et al.: Energy-based learning for scene graph generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 13936–13945 (2021)
Xu, D., et al.: Scene graph generation by iterative message passing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5419 (2017)
Yan, S., et al.: PCPL: predicate-correlation perception learning for unbiased scene graph generation. In: Proceedings of the ACM International Conference on Multimedia, pp. 265–273 (2020)
Yang, G., et al.: Probabilistic modeling of semantic ambiguity for scene graph generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12527–12536 (2021)
Yun, S., et al.: Graph transformer networks. In: Proceedings of the Advances in Neural Information Processing Systems, vol. 32, pp. 11983–11993 (2019)
Zareian, A., Karaman, S., Chang, S.-F.: Bridging knowledge graphs to generate scene graphs. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 606–623. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_36
Zellers, R., et al.: Neural motifs: scene graph parsing with global context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5831–5840 (2018)
Zhong, Y., et al.: Learning to generate scene graph from natural language supervision. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1823–1834 (2021)
Acknowledgement
This work was supported by National Key Research and Development Project (No. 2020AAA0106200), the National Nature Science Foundation of China under Grants (No. 61936005, 61872424), and the Natural Science Foundation of Jiangsu Province (Grants No. BK20200037 and BK20210595).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ye, J., Bao, BK., Tan, Z. (2023). Multi-modal Context-Aware Network for Scene Graph Generation. In: Lu, H., et al. Image and Graphics. ICIG 2023. Lecture Notes in Computer Science, vol 14356. Springer, Cham. https://doi.org/10.1007/978-3-031-46308-2_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-46308-2_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-46307-5
Online ISBN: 978-3-031-46308-2
eBook Packages: Computer ScienceComputer Science (R0)