[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-modal Context-Aware Network for Scene Graph Generation

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14356))

Included in the following conference series:

  • 488 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, T., et al.: Knowledge-embedded routing network for scene graph generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6163–6171 (2019)

    Google Scholar 

  2. Cui, Z., et al.: Context-dependent diffusion network for visual relationship detection. In: Proceedings of the ACM International Conference on Multimedia, pp. 1475–1482 (2018)

    Google Scholar 

  3. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  4. Lin, X., et al.: GPS-net: graph property sensing network for scene graph generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3746–3753 (2020)

    Google Scholar 

  5. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  6. Pennington, J., et al.: GloVe: global vectors for word representation. In: Proceedings of the conference on Empirical Methods in Natural Language Processing, pp. 1532–1543 (2014)

    Google Scholar 

  7. Qi, M., et al.: Attentive relational networks for mapping images to scene graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3957–3966 (2019)

    Google Scholar 

  8. Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. Proceedings of the Advances in Neural Information Processing Systems, vol. 28, pp. 91–99 (2015)

    Google Scholar 

  9. Sharifzadeh, S., et al.: Classification by attention: scene graph classification with prior knowledge. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 5025–5033 (2021)

    Google Scholar 

  10. Speer, R., Havasi, C.: ConceptNet 5: a large semantic network for relational knowledge. In: Gurevych, I., Kim, J. (eds.) The People’s Web Meets NLP. TANLP, pp. 161–176. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35085-6_6

    Chapter  Google Scholar 

  11. Suhail, M., et al.: Energy-based learning for scene graph generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 13936–13945 (2021)

    Google Scholar 

  12. Xu, D., et al.: Scene graph generation by iterative message passing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5419 (2017)

    Google Scholar 

  13. Yan, S., et al.: PCPL: predicate-correlation perception learning for unbiased scene graph generation. In: Proceedings of the ACM International Conference on Multimedia, pp. 265–273 (2020)

    Google Scholar 

  14. Yang, G., et al.: Probabilistic modeling of semantic ambiguity for scene graph generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12527–12536 (2021)

    Google Scholar 

  15. Yun, S., et al.: Graph transformer networks. In: Proceedings of the Advances in Neural Information Processing Systems, vol. 32, pp. 11983–11993 (2019)

    Google Scholar 

  16. Zareian, A., Karaman, S., Chang, S.-F.: Bridging knowledge graphs to generate scene graphs. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 606–623. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_36

    Chapter  Google Scholar 

  17. Zellers, R., et al.: Neural motifs: scene graph parsing with global context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5831–5840 (2018)

    Google Scholar 

  18. Zhong, Y., et al.: Learning to generate scene graph from natural language supervision. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1823–1834 (2021)

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Key Research and Development Project (No. 2020AAA0106200), the National Nature Science Foundation of China under Grants (No. 61936005, 61872424), and the Natural Science Foundation of Jiangsu Province (Grants No. BK20200037 and BK20210595).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyi Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, J., Bao, BK., Tan, Z. (2023). Multi-modal Context-Aware Network for Scene Graph Generation. In: Lu, H., et al. Image and Graphics. ICIG 2023. Lecture Notes in Computer Science, vol 14356. Springer, Cham. https://doi.org/10.1007/978-3-031-46308-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-46308-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-46307-5

  • Online ISBN: 978-3-031-46308-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics