Abstract
We introduce unORANIC, an unsupervised approach that uses an adapted loss function to drive the orthogonalization of anatomy and image-characteristic features. The method is versatile for diverse modalities and tasks, as it does not require domain knowledge, paired data samples, or labels. During test time unORANIC is applied to potentially corrupted images, orthogonalizing their anatomy and characteristic components, to subsequently reconstruct corruption-free images, showing their domain-invariant anatomy only. This feature orthogonalization further improves generalization and robustness against corruptions. We confirm this qualitatively and quantitatively on 5 distinct datasets by assessing unORANIC’s classification accuracy, corruption detection and revision capabilities. Our approach shows promise for enhancing the generalizability and robustness of practical applications in medical image analysis. The source code is available at github.com/sdoerrich97/unORANIC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Yang, J., et al. MedMNIST v2-A large-scale lightweight benchmark for 2D and 3D biomedical image classification. Scientific Data. 2023. License: CC BY 4.0. Zenodo. https://zenodo.org/record/6496656.
References
Acevedo, A., Merino, A., Alférez, S., Ángel Molina, Boldú, L., Rodellar, J.: A dataset of microscopic peripheral blood cell images for development of automatic recognition systems. Data Brief 30, 105474 (2020)
Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brief 28, 104863 (2020)
Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11, 125 (2020)
Chartsias, A., et al.: Disentangled representation learning in cardiac image analysis. Med. Image Anal. 58, 101535 (2019)
Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (isic). arXiv:1902.03368 (2019)
Dewey, B.E., et al.: A disentangled latent space for cross-site MRI harmonization. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 720–729. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_70
Eche, T., Schwartz, L.H., Mokrane, F.Z., Dercle, L.: Toward generalizability in the deployment of artificial intelligence in radiology: Role of computation stress testing to overcome underspecification. Radiol. Artificial Intell. 3, e210097 (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2016-December, pp. 770–778 (2016)
Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. In: Proceedings of the International Conference on Learning Representations (2019)
Jeong, J., Zou, Y., Kim, T., Zhang, D., Ravichandran, A., Dabeer, O.: Winclip: zero-/few-shot anomaly classification and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19606–19616 (2023)
Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172, 1122-1131.e9 (2018)
Khan, A., et al.: Impact of scanner variability on lymph node segmentation in computational pathology. J. Pathol. Inf. 13, 100127 (2022)
Lafarge, M.W., Pluim, J.P.W., Eppenhof, K.A.J., Moeskops, P., Veta, M.: Domain-Adversarial Neural Networks to Address the Appearance Variability of Histopathology Images. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 83–91. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_10
Li, B., Wang, Y., Zhang, S., Li, D., Keutzer, K., Darrell, T., Zhao, H.: Learning invariant representations and risks for semi-supervised domain adaptation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1104–1113 (2021)
Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Learning to generalize: Meta-learning for domain generalization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, pp. 3490–3497 (2018)
Liu, R., et al.: Deepdrid: diabetic retinopathy-grading and image quality estimation challenge. Patterns 3, 100512 (2022)
Manzari, O.N., Ahmadabadi, H., Kashiani, H., Shokouhi, S.B., Ayatollahi, A.: MedVit: a robust vision transformer for generalized medical image classification. Comput. Biol. Med. 157, 106791 (2023)
Michaelis, C., et al.: Benchmarking robustness in object detection: Autonomous driving when winter is coming. arXiv preprint arXiv:1907.07484 (2019)
Ngo, P.C., Winarto, A.A., Kou, C.K.L., Park, S., Akram, F., Lee, H.K.: Fence GAN: towards better anomaly detection. In: Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI 2019-November, pp. 141–148 (2019)
Oksuz, I., et al.: Deep learning-based detection and correction of cardiac MR motion artefacts during reconstruction for high-quality segmentation. IEEE Trans. Med. Imaging 39, 4001–4010 (2020)
Priyanka, Kumar, D.: Feature extraction and selection of kidney ultrasound images using GLCM and PCA. Procedia Comput. Sci. 167, 1722–1731 (2020)
Robert, T., Thome, N., Cord, M.: HybridNet: classification and reconstruction cooperation for semi-supervised learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 158–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_10
Rondinella, A., et al.: Boosting multiple sclerosis lesion segmentation through attention mechanism. Comput. Biol. Med. 161, 107021 (2023)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Stacke, K., Eilertsen, G., Unger, J., Lundstrom, C.: Measuring domain shift for deep learning in histopathology. IEEE J. Biomed. Health Inform. 25, 325–336 (2021)
Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)
Yang, J., Shi, R., Ni, B.: Medmnist classification decathlon: A lightweight automl benchmark for medical image analysis. In: Proceedings - International Symposium on Biomedical Imaging 2021-April, pp. 191–195 (2020)
Yang, J., et al.: Medmnist v2 - a large-scale lightweight benchmark for 2d and 3d biomedical image classification. Sci. Data 10(1), 1–10 (2023)
Zuo, L., et al.: Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory. Neuroimage 243, 118569 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Doerrich, S., Di Salvo, F., Ledig, C. (2024). unORANIC: Unsupervised Orthogonalization of Anatomy and Image-Characteristic Features. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-45673-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-45672-5
Online ISBN: 978-3-031-45673-2
eBook Packages: Computer ScienceComputer Science (R0)