[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

unORANIC: Unsupervised Orthogonalization of Anatomy and Image-Characteristic Features

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14348))

Included in the following conference series:

  • 1201 Accesses

Abstract

We introduce unORANIC, an unsupervised approach that uses an adapted loss function to drive the orthogonalization of anatomy and image-characteristic features. The method is versatile for diverse modalities and tasks, as it does not require domain knowledge, paired data samples, or labels. During test time unORANIC is applied to potentially corrupted images, orthogonalizing their anatomy and characteristic components, to subsequently reconstruct corruption-free images, showing their domain-invariant anatomy only. This feature orthogonalization further improves generalization and robustness against corruptions. We confirm this qualitatively and quantitatively on 5 distinct datasets by assessing unORANIC’s classification accuracy, corruption detection and revision capabilities. Our approach shows promise for enhancing the generalizability and robustness of practical applications in medical image analysis. The source code is available at github.com/sdoerrich97/unORANIC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Yang, J., et al. MedMNIST v2-A large-scale lightweight benchmark for 2D and 3D biomedical image classification. Scientific Data. 2023. License: CC BY 4.0. Zenodo. https://zenodo.org/record/6496656.

References

  1. Acevedo, A., Merino, A., Alférez, S., Ángel Molina, Boldú, L., Rodellar, J.: A dataset of microscopic peripheral blood cell images for development of automatic recognition systems. Data Brief 30, 105474 (2020)

    Google Scholar 

  2. Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brief 28, 104863 (2020)

    Article  Google Scholar 

  3. Buslaev, A., Iglovikov, V.I., Khvedchenya, E., Parinov, A., Druzhinin, M., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. Information 11, 125 (2020)

    Google Scholar 

  4. Chartsias, A., et al.: Disentangled representation learning in cardiac image analysis. Med. Image Anal. 58, 101535 (2019)

    Google Scholar 

  5. Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (isic). arXiv:1902.03368 (2019)

  6. Dewey, B.E., et al.: A disentangled latent space for cross-site MRI harmonization. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 720–729. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_70

    Chapter  Google Scholar 

  7. Eche, T., Schwartz, L.H., Mokrane, F.Z., Dercle, L.: Toward generalizability in the deployment of artificial intelligence in radiology: Role of computation stress testing to overcome underspecification. Radiol. Artificial Intell. 3, e210097 (2021)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2016-December, pp. 770–778 (2016)

    Google Scholar 

  9. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. In: Proceedings of the International Conference on Learning Representations (2019)

    Google Scholar 

  10. Jeong, J., Zou, Y., Kim, T., Zhang, D., Ravichandran, A., Dabeer, O.: Winclip: zero-/few-shot anomaly classification and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 19606–19616 (2023)

    Google Scholar 

  11. Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172, 1122-1131.e9 (2018)

    Article  Google Scholar 

  12. Khan, A., et al.: Impact of scanner variability on lymph node segmentation in computational pathology. J. Pathol. Inf. 13, 100127 (2022)

    Article  Google Scholar 

  13. Lafarge, M.W., Pluim, J.P.W., Eppenhof, K.A.J., Moeskops, P., Veta, M.: Domain-Adversarial Neural Networks to Address the Appearance Variability of Histopathology Images. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 83–91. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_10

    Chapter  Google Scholar 

  14. Li, B., Wang, Y., Zhang, S., Li, D., Keutzer, K., Darrell, T., Zhao, H.: Learning invariant representations and risks for semi-supervised domain adaptation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1104–1113 (2021)

    Google Scholar 

  15. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Learning to generalize: Meta-learning for domain generalization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, pp. 3490–3497 (2018)

    Google Scholar 

  16. Liu, R., et al.: Deepdrid: diabetic retinopathy-grading and image quality estimation challenge. Patterns 3, 100512 (2022)

    Article  Google Scholar 

  17. Manzari, O.N., Ahmadabadi, H., Kashiani, H., Shokouhi, S.B., Ayatollahi, A.: MedVit: a robust vision transformer for generalized medical image classification. Comput. Biol. Med. 157, 106791 (2023)

    Article  Google Scholar 

  18. Michaelis, C., et al.: Benchmarking robustness in object detection: Autonomous driving when winter is coming. arXiv preprint arXiv:1907.07484 (2019)

  19. Ngo, P.C., Winarto, A.A., Kou, C.K.L., Park, S., Akram, F., Lee, H.K.: Fence GAN: towards better anomaly detection. In: Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI 2019-November, pp. 141–148 (2019)

    Google Scholar 

  20. Oksuz, I., et al.: Deep learning-based detection and correction of cardiac MR motion artefacts during reconstruction for high-quality segmentation. IEEE Trans. Med. Imaging 39, 4001–4010 (2020)

    Article  Google Scholar 

  21. Priyanka, Kumar, D.: Feature extraction and selection of kidney ultrasound images using GLCM and PCA. Procedia Comput. Sci. 167, 1722–1731 (2020)

    Google Scholar 

  22. Robert, T., Thome, N., Cord, M.: HybridNet: classification and reconstruction cooperation for semi-supervised learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 158–175. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_10

    Chapter  Google Scholar 

  23. Rondinella, A., et al.: Boosting multiple sclerosis lesion segmentation through attention mechanism. Comput. Biol. Med. 161, 107021 (2023)

    Article  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Stacke, K., Eilertsen, G., Unger, J., Lundstrom, C.: Measuring domain shift for deep learning in histopathology. IEEE J. Biomed. Health Inform. 25, 325–336 (2021)

    Article  Google Scholar 

  26. Tschandl, P., Rosendahl, C., Kittler, H.: The ham10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5(1), 1–9 (2018)

    Google Scholar 

  27. Yang, J., Shi, R., Ni, B.: Medmnist classification decathlon: A lightweight automl benchmark for medical image analysis. In: Proceedings - International Symposium on Biomedical Imaging 2021-April, pp. 191–195 (2020)

    Google Scholar 

  28. Yang, J., et al.: Medmnist v2 - a large-scale lightweight benchmark for 2d and 3d biomedical image classification. Sci. Data 10(1), 1–10 (2023)

    Google Scholar 

  29. Zuo, L., et al.: Unsupervised MR harmonization by learning disentangled representations using information bottleneck theory. Neuroimage 243, 118569 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Doerrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doerrich, S., Di Salvo, F., Ledig, C. (2024). unORANIC: Unsupervised Orthogonalization of Anatomy and Image-Characteristic Features. In: Cao, X., Xu, X., Rekik, I., Cui, Z., Ouyang, X. (eds) Machine Learning in Medical Imaging. MLMI 2023. Lecture Notes in Computer Science, vol 14348. Springer, Cham. https://doi.org/10.1007/978-3-031-45673-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45673-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45672-5

  • Online ISBN: 978-3-031-45673-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics