[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On the Enumeration of Non-dominated Spanning Trees with Imprecise Weights

  • Conference paper
  • First Online:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14294))

  • 270 Accesses

Abstract

Many works within robust combinatorial optimisation consider interval-valued costs or constraints. While most of these works focus on finding unique solutions such as minimax ones, a few consider the problem of characterising a set of non-dominated optimal solutions. This paper is situated within this line of work, and consider the problem of exactly enumerating the set of non-dominated spanning trees under interval-valued costs. We show in particular that each tree in this set can be obtained through a polynomial procedure, and provide an efficient algorithm to achieve the enumeration.

Due to paucity of space, proofs has been omitted. The full version is available here: https://hal.utc.fr/hal-04155185.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We have provided proofs in the appendix for review purposes, as including them would exceed page limits. Appendices will not be part of the final version.

References

  1. Aron, I.D., Van Hentenryck, P.: On the complexity of the robust spanning tree problem with interval data. Oper. Res. Lett. 32(1), 36–40 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benabbou, N., Perny, P.: On possibly optimal tradeoffs in multicriteria spanning tree problems. In: Walsh, T. (ed.) ADT 2015. LNCS (LNAI), vol. 9346, pp. 322–337. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23114-3_20

    Chapter  Google Scholar 

  3. Destercke, S., Guillaume, R.: Necessary and Possibly Optimal Items in Selecting Problems. In: Ciucci, D., et al. (eds.) IPMU 2022, Part I. Communications in Computer and Information Science, vol. 1601, pp. 494–503. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08971-8_41

    Chapter  Google Scholar 

  4. Guillaume, R., Kasperski, A., Zieliński, P.: Distributionally robust possibilistic optimization problems. Fuzzy Sets Syst. 454, 56–73 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hradovich, M., Kasperski, A., Zielinski, P.: The recoverable robust spanning tree problem with interval costs is polynomially solvable. Optimiz. Lett. 11(1), 17–30 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kasperski, A.: Discrete Optimization with Interval Data. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-78484-5.pdf

    Book  MATH  Google Scholar 

  7. Kozina, G.L., Perepelitsa, V.A.: Interval spanning trees problem: solvability and computational complexity. Interval Comput. 1(1), 42–50 (1994)

    MathSciNet  MATH  Google Scholar 

  8. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  9. Montemanni, R., Gambardella, L.M.: A branch and bound algorithm for the robust spanning tree problem with interval data. Eur. J. Oper. Res. 161(3), 771–779 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pop, P.C.: The generalized minimum spanning tree problem: an overview of formulations, solution procedures and latest advances. Eur. J. Oper. Res. 283(1), 1–15 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Quaeghebeur, E., Shariatmadar, K., De Cooman, G.: Constrained optimization problems under uncertainty with coherent lower previsions. Fuzzy Sets Syst. 206, 74–88 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Vu, T.A., Afifi, S., Lefèvre, É., Pichon, F.: On modelling and solving the shortest path problem with evidential weights. In: Le H’egarat-Mascle, S., Bloch, I., Aldea, E. (eds.) BELIEF 2022. LNCS, vol. 13506, pp. 139–149. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17801-6_14

    Chapter  MATH  Google Scholar 

  13. Yaman, H., Karaş, O.E., Pınar, M.Ç.: The robust spanning tree problem with interval data. Oper. Res. Lett. 29(1), 31–40 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Davot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Davot, T., Destercke, S., Savourey, D. (2024). On the Enumeration of Non-dominated Spanning Trees with Imprecise Weights. In: Bouraoui, Z., Vesic, S. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2023. Lecture Notes in Computer Science(), vol 14294. Springer, Cham. https://doi.org/10.1007/978-3-031-45608-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45608-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45607-7

  • Online ISBN: 978-3-031-45608-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics