[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On Identifiability of BN2A Networks

  • Conference paper
  • First Online:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2023)

Abstract

In this paper, we consider two-layer Bayesian networks. The first layer consists of hidden (unobservable) variables and the second layer consists of observed variables. All variables are assumed to be binary. The variables in the second layer depend on the variables in the first layer. The dependence is characterised by conditional probability tables representing Noisy-AND or simple Noisy-AND. We will refer to this class of models as BN2A models. We found that the models known in the Bayesian network community as Noisy-AND and simple Noisy-AND are also used in the cognitive diagnostic modelling known in the psychometric community under the names of RRUM and DINA, respectively. In this domain, the hidden variables of BN2A models correspond to skills and the observed variables to students’ responses to test questions. In this paper we analyse the identifiability of these models. Identifiability is an important concept because without it we cannot hope to learn correct models. We present necessary conditions for the identifiability of BN2As with Noisy-AND models. We also propose and test a numerical approach for testing identifiability.

This work was supported by grants 22-11101S and 21-03658S of the Czech Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Symbol \(\textbf{x}_{pa(\ell )}\) denotes the subvector of \(\textbf{x}\) whose values corresponds to variables \(X_i, i \in pa(Y_{\ell })\).

  2. 2.

    The set of exceptions has Lebesgue measure zero.

  3. 3.

    We do not claim that this list is exclusive.

  4. 4.

    We emphasize that there is no hope of getting correct results with finite-precision real arithmetic since, e.g., in one run, the absolute values of the computed determinants were in the interval \([10^{-37},10^{-72}]\) for this model.

References

  1. D’Ambrosio, B.: Symbolic probabilistic inference in large BN2O networks. In: de Mantaras, R.L., Poole, D. (eds.) Uncertainty in Artificial Intelligence (UAI’94) Proceedings, pp. 128–135. Morgan Kaufmann, San Francisco (CA) (1994). https://doi.org/10.1016/B978-1-55860-332-5.50022-5

  2. de la Torre, J.: The generalized DINA model framework. Psychometrika 76, 179–199 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Díez, F.J., Druzdzel, M.J.: Canonical probabilistic models for knowledge engineering. Technical report CISIAD-06-01, UNED, Madrid, Spain (2006)

    Google Scholar 

  4. Geiger, D., Heckerman, D., Meek, C.: Asymptotic model selection for directed networks with hidden variables. In: Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (UAI-96). pp. 283–290 (1996)

    Google Scholar 

  5. Gu, Y., Xu, G.: Sufficient and necessary conditions for the identifiability of the Q-matrix. Stat. Sin. 31, 449–472 (2021). https://doi.org/10.5705/ss.202018.0410

    Article  MathSciNet  MATH  Google Scholar 

  6. Halpern, Y., Sontag, D.: Unsupervised learning of noisy-or Bayesian networks. In: Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, pp. 272–281. UAI 2013, AUAI Press, Arlington, Virginia, USA (2013)

    Google Scholar 

  7. Hartz, S.M.: A Bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality. Ph.D. thesis, University of Illinois at Urbana-Champaign (1996)

    Google Scholar 

  8. Heller, J.: Identifiability in probabilistic knowledge structures. J. Math. Psychol. 77, 46–57 (2017). https://doi.org/10.1016/j.jmp.2016.07.008

    Article  MathSciNet  MATH  Google Scholar 

  9. Henrion, M.: Some practical issues in constructing belief networks. In: Proceedings of the Third Conference on Uncertainty in Artificial Intelligence (UAI-87), pp. 161–173. Elsevier Science Publishers B.V. (North Holland) (1987)

    Google Scholar 

  10. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs. Information Science and Statistics, 2nd edn. Springer, New York (2007). https://doi.org/10.1007/978-0-387-68282-2

    Book  MATH  Google Scholar 

  11. Junker, B.W., Sijtsma, K.: Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Appl. Psychol. Meas. 25, 258–272 (2001)

    Article  MathSciNet  Google Scholar 

  12. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  13. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)

    MATH  Google Scholar 

  14. Sullivant, S.: Algebraic Statistics. American Mathematical Society, Providence (2018)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Vomlel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pérez, I., Vomlel, J. (2024). On Identifiability of BN2A Networks. In: Bouraoui, Z., Vesic, S. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2023. Lecture Notes in Computer Science(), vol 14294. Springer, Cham. https://doi.org/10.1007/978-3-031-45608-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45608-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45607-7

  • Online ISBN: 978-3-031-45608-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics