[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Assessment of Robust Multi-objective Evolutionary Algorithms on Robust and Noisy Environments

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14197))

Included in the following conference series:

  • 353 Accesses

Abstract

Robust optimization considers uncertainty in the decision variables while noisy optimization concerns with uncertainty in the evaluation of objective and constraint functions. Although many evolutionary algorithms have been proposed to deal with robust or noisy optimization problems, the research question approached here is whether these methods can deal with both types of uncertainties at the same time. In order to answer this question, we extend a test function generator available in the literature for multi-objective optimization to incorporate uncertainties in the decision variables and in the objective functions. It allows the creation of scalable and customizable problems for any number of objectives. Three evolutionary algorithms specifically designed for robust or noisy optimization were selected: RNSGA-II and RMOEA/D, which utilize Monte Carlo sampling, and the C-RMOEA/D, which is a coevolutionary MOEA/D that uses a deterministic robustness measure. We did experiments with these algorithms on multi-objective problems with (i) uncertainty in the decision variables, (ii) noise in the output, and (iii) with both robust and noisy problems. The results show that these algorithms are not able to deal with simultaneous uncertainties (noise and perturbation). Therefore, there is a need for designing algorithms to deal with simultaneously robust and noisy environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For Gaussian noise: moderate intensity considers \(\beta = 0.01\), which corresponds to a variation of up to 3\(\%\) (either multiplying the function by 1.03 or multiplying the function by 0.97); severe intensity considers \(\beta = 1\), resulting in a variation of up to 20 times (either multiplying the function by 20 or dividing the function by 20). For uniform noise: moderate intensity considers \(\beta = 0.01\) and \(\alpha = 0.01(0.49 + 1/D)\), where D represents the number of decision variables (always considered as 24 in this work), resulting in a variation of up to 12\(\%\); severe intensity considers \(\beta = 1\) and \(\alpha = 0.49 + 1/D\), resulting in a variation of up to tens of thousands. For Cauchy noise: moderate intensity considers \(\alpha = 0.01\) and \(p = 0.05\); severe intensity considers \(\alpha = 1\) and \(p = 0.2\).

  2. 2.

    Further details on the decomposition algorithm and methods can be found in [23].

References

  1. Balouka, N., Cohen, I.: A robust optimization approach for the multi-mode resource-constrained project scheduling problem. Eur. J. Oper. Res. 291(2), 457–470 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization, vol. 28. Princeton University Press, Princeton (2009)

    Google Scholar 

  3. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization in Applied Mathematics. Princeton Series, Princeton (2009)

    Book  MATH  Google Scholar 

  4. Beyer, H.G., Sendhoff, B.: Robust optimization – a comprehensive survey. Comput. Methods Appl. Mech. Eng. 196(33), 3190–3218 (2007). https://doi.org/10.1016/j.cma.2007.03.003

    Article  MathSciNet  MATH  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Deb, K., Sindhya, K., Hakanen, J.: Introducing robustness in multi-objective optimization. Evol. Comput. 14(4), 463–494 (2006)

    Article  Google Scholar 

  7. Duan, J., He, Z., Yen, G.G.: Robust multiobjective optimization for vehicle routing problem with time windows. IEEE Trans. Cybern. 52(8), 8300–8314 (2021)

    Article  Google Scholar 

  8. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimization benchmarking 2010: presentation of the noisy functions. Technical report. Citeseer (2010)

    Google Scholar 

  9. Gaspar-Cunha, A., Covas, J.A.: Robustness in multi-objective optimization using evolutionary algorithms. Comput. Optim. Appl. 39(1), 75–96 (2007). https://doi.org/10.1007/s10589-007-9053-9

    Article  MathSciNet  MATH  Google Scholar 

  10. Goerigk, M., Schöbel, A.: Algorithm Engineering in Robust Optimization. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49487-6_8

    Book  MATH  Google Scholar 

  11. Gorissen, B.L., Yanıkoğlu, İ, den Hertog, D.: A practical guide to robust optimization. Omega 53, 124–137 (2015). https://doi.org/10.1016/j.omega.2014.12.006

    Article  Google Scholar 

  12. Häse, F., et al.: Olympus: a benchmarking framework for noisy optimization and experiment planning. Mach. Learn. Sci. Technol. 2(3), 035021 (2021)

    Article  Google Scholar 

  13. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments – a survey. Trans. Evol. Comput. 9(3), 303–317 (2005)

    Article  Google Scholar 

  14. Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty, and Information. Prentice-Hall, Englewood Cliffs (1998)

    MATH  Google Scholar 

  15. Liu, J., Liu, Y., Jin, Y., Li, F.: A decision variable assortment-based evolutionary algorithm for dominance robust multiobjective optimization. IEEE Trans. Syst. Man Cybern. Syst. 52(5), 3360–3375 (2021)

    Article  Google Scholar 

  16. Liu, R., Li, Y., Wang, H., Liu, J.: A noisy multi-objective optimization algorithm based on mean and Wiener filters. Knowl.-Based Syst. 228, 107215 (2021)

    Article  Google Scholar 

  17. Lu, Y., Xu, Y., Herrera-Viedma, E., Han, Y.: Consensus of large-scale group decision making in social network: the minimum cost model based on robust optimization. Inf. Sci. 547, 910–930 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Meneghini, I.R., Alves, M.A., Gaspar-Cunha, A., Guimaraes, F.G.: Scalable and customizable benchmark problems for many-objective optimization. Appl. Soft Comput. 90, 106139 (2020)

    Article  Google Scholar 

  19. Meneghini, I.R., Guimaraes, F.G., Gaspar-Cunha, A.: Competitive coevolutionary algorithm for robust multi-objective optimization: the worst case minimization. In: IEEE Congress on Evolutionary Computation (CEC), pp. 586–593 (2016). https://doi.org/10.1109/CEC.2016.7743846

  20. Mou, W., Wang, Q., Peng, J.: Accelerating gradient-based optimization via importance sampling. J. Mach. Learn. Res. 22(22), 1–29 (2021)

    Google Scholar 

  21. Ong, Y.S., Nair, P.B., Lum, K.Y.: Max-min surrogate-assisted evolutionary algorithm for robust design. IEEE Trans. Evol. Comput. 10(4), 392–404 (2006). https://doi.org/10.1109/TEVC.2005.859464

    Article  Google Scholar 

  22. Sahmoud, S., Topcuoglu, H.R.: Dynamic multi-objective evolutionary algorithms in noisy environments. Inf. Sci. 634, 650–664 (2023)

    Article  Google Scholar 

  23. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans. Evol. Comput. 21(3), 440–462 (2016)

    Google Scholar 

  24. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithm research: a history and analysis. Technical report. Citeseer (1998)

    Google Scholar 

  25. Yang, J., Su, C.: Robust optimization of microgrid based on renewable distributed power generation and load demand uncertainty. Energy 223, 120043 (2021)

    Article  Google Scholar 

  26. Yang, Y.: Robust multi-objective optimization based on the idea of multi-tasking and knowledge transfer. In: Proceedings of the 14th International Conference on Computer Modeling and Simulation, pp. 257–265 (2022)

    Google Scholar 

  27. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

Download references

Acknowledgment

This work has been supported by the Brazilian agencies (i) National Council for Scientific and Technological Development (CNPq), Grant no. 312991/2020-7; (ii) Coordination for the Improvement of Higher Education Personnel (CAPES) through the Academic Excellence Program (PROEX) and (iii) Foundation for Research of the State of Minas Gerais (FAPEMIG, in Portuguese), Grant no. APQ-01779-21. MINDS Laboratory – https://minds.eng.ufmg.br/

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateus Clemente de Sousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Sousa, M.C., Meneghini, I.R., Guimarães, F.G. (2023). Assessment of Robust Multi-objective Evolutionary Algorithms on Robust and Noisy Environments. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14197. Springer, Cham. https://doi.org/10.1007/978-3-031-45392-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45392-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45391-5

  • Online ISBN: 978-3-031-45392-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics