[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Hierarchical Time-Aware Approach for Video Summarization

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2023)

Abstract

Video summarization consists of generating a concise video representation that captures all its meaningful information. However, conventional summarization techniques often fall short of capturing all the significant events in a video due to their inability to incorporate the hierarchical structure of the video content. This work proposes an unsupervised method, named Hierarchical Time-aware Summarizer–HieTaSumm, that uses a hierarchical approach for that task. In this regard, hierarchical strategies for video summarization have emerged as a promising solution, in which video content is modeled as a graph to identify keyframes that represent the most relevant information. This approach enables the extraction of the frames that convey the central message of the video, resulting in a more effective and precise summary. Experimental results indicate that the proposed approach has great potential. Specifically, it seems to enhance coherence among different video segments, reducing frame redundancy in the generated summaries, and enhancing the diversity of selected keyframes.

Code available at https://github.com/IMScience-PPGINF-PucMinas/HieTaSumm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apostolidis, E., Adamantidou, E., Metsai, A.I., Mezaris, V., Patras, I.: Video summarization using deep neural networks: a survey. Proc. IEEE 109(11), 1838–1863 (2021)

    Article  Google Scholar 

  2. Asha Paul, M.K., Kavitha, J., Jansi Rani, P.A.: Key-frame extraction techniques: a review. Recent Patents Comput. Sci. 11(1), 3–16 (2018)

    Article  Google Scholar 

  3. Basavarajaiah, M., Sharma, P.: Survey of compressed domain video summarization techniques. ACM Comput. Surv. 52(6), 1–29 (2019)

    Article  Google Scholar 

  4. Cardoso, L.V., Guimaraes, S.J.F., Patrocínio, Z.K.G.: Enhanced-memory transformer for coherent paragraph video captioning. In: 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 836–840. IEEE (2021)

    Google Scholar 

  5. Cardoso, L.V., Guimaraes, S.J.F., Patrocinio, Z.K.G.: Exploring adaptive attention in memory transformer applied to coherent video paragraph captioning. In: 2022 IEEE Eighth International Conference on Multimedia Big Data (BigMM), pp. 37–44. IEEE (2022)

    Google Scholar 

  6. Cardoso, L.V., Guimaraes, S.J.F., Patrocinio Junior, Z.K.G.: Hierarchical time-aware summarization with an adaptive transformer for video captioning. Int. J. Semant. Comput. (2023)

    Google Scholar 

  7. Cousty, J., Najman, L.: Incremental algorithm for hierarchical minimum spanning forests and saliency of watershed cuts. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 272–283. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21569-8_24

    Chapter  MATH  Google Scholar 

  8. Cousty, J., Najman, L., Kenmochi, Y., Guimarães, S.: Hierarchical segmentations with graphs: quasi-flat zones, minimum spanning trees, and saliency maps. J. Math. Imaging Vis. 60(4), 479–502 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Avila, S.E.F., Lopes, A.P.B., da Luz Jr., A., de Albuquerque Araújo, A.: Vsumm: A mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recognit. Lett. 32(1), 56–68 (2011)

    Google Scholar 

  10. Ejaz, N., Tariq, T.B., Baik, S.W.: Adaptive key frame extraction for video summarization using an aggregation mechanism. J. Vis. Commun. Image Represent. 23(7), 1031–1040 (2012)

    Article  Google Scholar 

  11. Furini, M., Geraci, F., Montangero, M., Pellegrini, M.: VISTO: visual storyboard for web video browsing. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, pp. 635–642 (2007)

    Google Scholar 

  12. Guimarães, S., Kenmochi, Y., Cousty, J., Patrocinio, Z., Najman, L.: Hierarchizing graph-based image segmentation algorithms relying on region dissimilarity: the case of the felzenszwalb-huttenlocher method. Math. Morphol.-Theory Appl. 2(1), 55–75 (2017)

    MATH  Google Scholar 

  13. Lu, G., Zhou, Y., Li, X., Yan, P.: Unsupervised, efficient and scalable key-frame selection for automatic summarization of surveillance videos. Multimed. Tools Appl. 76, 6309–6331 (2017)

    Article  Google Scholar 

  14. del Molino, A.G., Tan, C., Lim, J.H., Tan, A.H.: Summarization of egocentric videos: a comprehensive survey. IEEE Trans. Hum.-Mach. Syst. 47(1), 65–76 (2017)

    Google Scholar 

  15. Panda, R., Mithun, N.C., Roy-Chowdhury, A.K.: Diversity-aware multi-video summarization. IEEE Trans. Image Process. 26(10), 4712–4724 (2017)

    Article  MathSciNet  Google Scholar 

  16. Pandey, S., Dwivedy, P., Meena, S., Potnis, A.: A survey on key frame extraction methods of a mpeg video. In: 2017 International Conference on Computing, Communication and Automation (ICCCA), pp. 1192–1196 (2017)

    Google Scholar 

  17. dos Santos Belo, L., Caetano Jr., C.A., Patrocínio Jr., Z.K.G., Guimarães, S.J.F.: Summarizing video sequence using a graph-based hierarchical approach. Neurocomputing 173, 1001–1016 (2016)

    Google Scholar 

  18. Song, Y., Vallmitjana, J., Stent, A., Jaimes, A.: TVSum: summarizing web videos using titles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5179–5187 (2015)

    Google Scholar 

  19. Tiwari, V., Bhatnagar, C.: A survey of recent work on video summarization: approaches and techniques. Multimed. Tools Appl. 80(18), 27187–27221 (2021)

    Article  Google Scholar 

  20. Vivekraj, V., Debashis, S., Balasubramanian, R.: Video skimming: taxonomy and comprehensive survey. ACM Comput. Surv. 52(5) (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq - (Universal 407242/2021-0 and PQ 306573/2022-9), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais - FAPEMIG - (Grants PPM- 00006-18). This study was also financed in part by PUC Minas and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Vilela Cardoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cardoso, L.V., Gomes, G.O.R., Guimarães, S.J.F., do Patrocínio Júnior, Z.K.G. (2023). Hierarchical Time-Aware Approach for Video Summarization. In: Naldi, M.C., Bianchi, R.A.C. (eds) Intelligent Systems. BRACIS 2023. Lecture Notes in Computer Science(), vol 14195. Springer, Cham. https://doi.org/10.1007/978-3-031-45368-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-45368-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-45367-0

  • Online ISBN: 978-3-031-45368-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics