[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Counterfactual Explanations for Graph Classification Through the Lenses of Density

  • Conference paper
  • First Online:
Explainable Artificial Intelligence (xAI 2023)

Abstract

Counterfactual examples have emerged as an effective approach to produce simple and understandable post-hoc explanations. In the context of graph classification, previous work has focused on generating counterfactual explanations by manipulating the most elementary units of a graph, i.e., removing an existing edge, or adding a non-existing one. In this paper, we claim that such language of explanation might be too fine-grained, and turn our attention to some of the main characterizing features of real-world complex networks, such as the tendency to close triangles, the existence of recurring motifs, and the organization into dense modules. We thus define a general density-based counterfactual search framework to generate instance-level counterfactual explanations for graph classifiers, which can be instantiated with different notions of dense substructures. In particular, we show two specific instantiations of this general framework: a method that searches for counterfactual graphs by opening or closing triangles, and a method driven by maximal cliques. We also discuss how the general method can be instantiated to exploit any other notion of dense substructures, including, for instance, a given taxonomy of nodes. We evaluate the effectiveness of our approaches in 7 brain network datasets and compare the counterfactual statements generated according to several widely-used metrics. Results confirm that adopting a semantic-relevant unit of change like density is essential to define versatile and interpretable counterfactual explanation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 59.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 74.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Density is usually defined as the number of edges over the number of possible edges. W.l.o.g. we omit the denominator.

  2. 2.

    In our experiments we constrained the max deviation between the number of edges added and removed in terms of the max number of nodes b that a clique added can have with respect to the number of nodes in the clique removed, and set \(b = 10\).

  3. 3.

    http://fcon_1000.projects.nitrc.org/indi/ACPI/html/acpi_mta_1.html.

  4. 4.

    https://github.com/GRAND-Lab/graph_datasets.

  5. 5.

    See http://preprocessed-connectomes-project.org/abide/dparsf.html for AUT and BIP, and https://ccraddock.github.io/cluster_roi/atlases.html for ADHD and ADHDM. For OHSU, PEK, and KKI, the data was already preprocessed.

  6. 6.

    https://github.com/carlo-abrate/Counterfactual-Explanations-for-Graph-Classification-Through-the-Lenses-of-Density.git.

  7. 7.

    https://github.com/carlo-abrate/Counterfactual-Explanations-for-Graph-Classification-Through-the-Lenses-of-Density.

References

  1. Abrate, C., Bonchi, F.: Counterfactual graphs for explainable classification of brain networks. In: SIGKDD, pp. 2495–2504 (2021)

    Google Scholar 

  2. Baldassarre, F., Azizpour, H.: Explainability techniques for graph convolutional networks. arXiv preprint arXiv:1905.13686 (2019)

  3. Barabási, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101–113 (2004)

    Article  Google Scholar 

  4. Bhatore, S., Mohan, L., Reddy, Y.R.: Machine learning techniques for credit risk evaluation: a systematic literature review. J. Bank. Financ. Technol. 4(1), 111–138 (2020). https://doi.org/10.1007/s42786-020-00020-3

    Article  Google Scholar 

  5. Biran, O., Cotton, C.: Explanation and justification in machine learning: a survey. In: IJCAI-17 Workshop on Explainable AI (XAI), vol. 8, pp. 8–13 (2017)

    Google Scholar 

  6. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering. LNCS, vol. 9220, pp. 117–158. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49487-6_4

    Chapter  Google Scholar 

  7. Chang, L., Qin, L.: Cohesive Subgraph Computation over Large Sparse Graphs: Algorithms, Data Structures, and Programming Techniques. Springer Series in the Data Sciences, Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-03599-0

    Book  MATH  Google Scholar 

  8. Craddock, C., et al.: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives. Front. Neuroinform. 7, 27 (2013)

    Google Scholar 

  9. Craddock, R.C., James, G.A., Holtzheimer III, P.E., Hu, X.P., Mayberg, H.S.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33(8), 1914–1928 (2012)

    Google Scholar 

  10. Du, Y., Fu, Z., Calhoun, V.D.: Classification and prediction of brain disorders using functional connectivity: promising but challenging. Front. Neurosci. 12, 525 (2018)

    Article  Google Scholar 

  11. Ewald, V., et al.: Posterior fossa sub-arachnoid cysts observed in patients with bipolar disorder: a retrospective cohort study. Cerebellum 22, 1–9 (2022)

    Article  Google Scholar 

  12. Fang, Y., Wang, K., Lin, X., Zhang, W.: Cohesive Subgraph Search over Large Heterogeneous Information Networks. SpringerBriefs in Computer Science, Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-030-97568-5

    Book  MATH  Google Scholar 

  13. Faragó, A., Mojaveri, Z.R.: In search of the densest subgraph. Algorithms 12(8), 157 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  15. Funke, T., Khosla, M., Anand, A.: ZORRO: valid, sparse, and stable explanations in graph neural networks. TKDE (2021)

    Google Scholar 

  16. Gionis, A., Tsourakakis, C.E.: Dense subgraph discovery: KDD 2015 tutorial. In: SIGKDD, pp. 2313–2314 (2015)

    Google Scholar 

  17. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guidotti, R.: Counterfactual explanations and how to find them: literature review and benchmarking. Data Min. Knowl. Discov. 1–55 (2022)

    Google Scholar 

  19. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM CSUR 51(5), 1–42 (2018)

    Google Scholar 

  20. Gulfidan, G., Turanli, B., Beklen, H., Sinha, R., Arga, K.Y.: Pan-cancer mapping of differential protein-protein interactions. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  21. Gutiérrez-Gómez, L., Delvenne, J.-C.: Unsupervised network embeddings with node identity awareness. Appl. Netw. Sci. 4(1), 1–21 (2019). https://doi.org/10.1007/s41109-019-0197-1

    Article  Google Scholar 

  22. Ha, S., Sohn, I.J., Kim, N., Sim, H.J., Cheon, K.A.: Characteristics of brains in autism spectrum disorder: structure, function and connectivity across the lifespan. Exp. Neurobiol. 24(4), 273 (2015)

    Article  Google Scholar 

  23. Huang, Q., Yamada, M., Tian, Y., Singh, D., Chang, Y.: GraphLIME: local interpretable model explanations for graph neural networks. TKDE (2022)

    Google Scholar 

  24. Karimi, A.H., Barthe, G., Schölkopf, B., Valera, I.: A survey of algorithmic recourse: definitions, formulations, solutions, and prospects. arXiv preprint arXiv:2010.04050 (2020)

  25. Kim, D., et al.: Posterior cerebellar vermal deficits in bipolar disorder. J. Affect. Disord. 150, 499–506 (2013). https://doi.org/10.1016/j.jad.2013.04.050

    Article  Google Scholar 

  26. Kim, Y., Hao, J., Gautam, Y., Mersha, T.B., Kang, M.: DiffGRN: differential gene regulatory network analysis. IJDMB 20(4), 362 (2018)

    Article  Google Scholar 

  27. Kononenko, I.: Machine learning for medical diagnosis: history, state of the art and perspective. Artif. Intell. Med. 23(1), 89–109 (2001)

    Article  Google Scholar 

  28. Koutrouli, M., Karatzas, E., Paez-Espino, D., Pavlopoulos, G.A.: A guide to conquer the biological network era using graph theory. Front. Bioeng. Biotechnol. 8, 34 (2020)

    Article  Google Scholar 

  29. Lai, Y., Wu, B., Chen, L., Zhao, H.: A statistical method for identifying differential gene-gene co-expression patterns. Bioinformatics 20(17), 3146–3155 (2004)

    Article  Google Scholar 

  30. Lanciano, T., Bonchi, F., Gionis, A.: Explainable classification of brain networks via contrast subgraphs. In: SIGKDD (2020)

    Google Scholar 

  31. Lanciano, T., Savino, A., Porcu, F., Cittaro, D., Bonchi, F., Provero, P.: Contrast subgraphs allow comparing homogeneous and heterogeneous networks derived from omics data. GigaScience 12 (2023)

    Google Scholar 

  32. de Lara, N., Pineau, E.: A simple baseline algorithm for graph classification. arXiv preprint arXiv:1810.09155 (2018)

  33. Lee, V.E., Ruan, N., Jin, R., Aggarwal, C.: A survey of algorithms for dense subgraph discovery. In: Aggarwal, C., Wang, H. (eds.) Managing and Mining Graph Data. Advances in Database Systems, vol. 40, pp. 303–336. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-6045-0_10

    Chapter  Google Scholar 

  34. Lucic, A., Ter Hoeve, M.A., Tolomei, G., De Rijke, M., Silvestri, F.: CF-GNNExplainer: counterfactual explanations for graph neural networks. In: AISTATS, pp. 4499–4511 (2022)

    Google Scholar 

  35. Luo, D., et al.: Parameterized explainer for graph neural network. Adv. Neural. Inf. Process. Syst. 33, 19620–19631 (2020)

    Google Scholar 

  36. Malliaros, F.D., Vazirgiannis, M.: Clustering and community detection in directed networks: a survey. Phys. Rep. 533(4), 95–142 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Meng, L., Xiang, J.: Brain network analysis and classification based on convolutional neural network. Front. Comput. Neurosci. 12, 95 (2018)

    Article  Google Scholar 

  38. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  39. Minichino, A., et al.: The role of cerebellum in unipolar and bipolar depression: a review of the main neurobiological findings. Riv. Psichiatria 49, 124–31 (2014). https://doi.org/10.1708/1551.16907

    Article  Google Scholar 

  40. Misman, M.F., et al.: Classification of adults with autism spectrum disorder using deep neural network. In: AiDAS, pp. 29–34 (2019)

    Google Scholar 

  41. Moraffah, R., Karami, M., Guo, R., Raglin, A., Liu, H.: Causal interpretability for machine learning-problems, methods and evaluation. ACM SIGKDD Explor. Newsl. 22(1), 18–33 (2020)

    Article  Google Scholar 

  42. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 607–617 (2020)

    Google Scholar 

  43. Nascimento, M.C., de Carvalho, A.C.: Spectral methods for graph clustering - a survey. Eur. J. Oper. Res. 211(2), 221–231 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  45. Nibbe, R.K., Chowdhury, S.A., Koyutürk, M., Ewing, R., Chance, M.R.: Protein-protein interaction networks in the biology of disease. WIREs Syst. Biol. Med. 3(3), 357–367 (2011)

    Article  Google Scholar 

  46. Pan, S., Wu, J., Zhu, X., Long, G., Zhang, C.: Task sensitive feature exploration and learning for multitask graph classification. IEEE Trans. Cybern. 47(3), 744–758 (2016)

    Article  Google Scholar 

  47. Perotti, A., Bajardi, P., Bonchi, F., Panisson, A.: GRAPHSHAP: motif-based explanations for black-box graph classifiers. arXiv preprint arXiv:2202.08815 (2022)

  48. Pope, P.E., Kolouri, S., Rostami, M., Martin, C.E., Hoffmann, H.: Explainability methods for graph convolutional neural networks. In: CVPR, pp. 10772–10781 (2019)

    Google Scholar 

  49. Prado-Romero, M.A., Prenkaj, B., Stilo, G., Giannotti, F.: A survey on graph counterfactual explanations: definitions, methods, evaluation. arXiv preprint arXiv:2210.12089 (2022)

  50. Sani, G., et al.: Association between duration of lithium exposure and hippocampus/amygdala volumes in type i bipolar disorder. J. Affect. Disord. 232, 341–348 (2018)

    Article  Google Scholar 

  51. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)

    Article  MATH  Google Scholar 

  52. Schlichtkrull, M.S., De Cao, N., Titov, I.: Interpreting graph neural networks for NLP with differentiable edge masking. In: ICLR (2020)

    Google Scholar 

  53. Schnake, T., et al.: Higher-order explanations of graph neural networks via relevant walks. arXiv preprint arXiv:2006.03589 (2020)

  54. Singh, A.J., Ramsey, S.A., Filtz, T.M., Kioussi, C.: Differential gene regulatory networks in development and disease. Cell. Mol. Life Sci. 75(6), 1013–1025 (2018)

    Article  Google Scholar 

  55. Sörös, P., et al.: Inattention predicts increased thickness of left occipital cortex in men with ADHD. Front. Psychiatry 8, 170 (2017). https://doi.org/10.3389/fpsyt.2017.00170

    Article  Google Scholar 

  56. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)

    Article  Google Scholar 

  57. Vu, M., Thai, M.T.: PGM-explainer: probabilistic graphical model explanations for graph neural networks. Adv. Neural. Inf. Process. Syst. 33, 12225–12235 (2020)

    Google Scholar 

  58. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harv. JL Tech. 31, 841 (2017)

    Google Scholar 

  59. Wang, S., He, L., Cao, B., Lu, C.T., Yu, P.S., Ragin, A.B.: Structural deep brain network mining. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017, pp. 475–484 (2017)

    Google Scholar 

  60. Wang, X., Wu, Y., Zhang, A., Feng, F., He, X., Chua, T.S.: Reinforced causal explainer for graph neural networks. Trans. Pattern Anal. Mach. Intell. 45(2), 2297–2309 (2023)

    Article  Google Scholar 

  61. Wellawatte, G.P., Seshadri, A., White, A.D.: Model agnostic generation of counterfactual explanations for molecules. Chem. Sci. 13(13), 3697–3705 (2022)

    Article  Google Scholar 

  62. Weston, C.S.: Four social brain regions, their dysfunctions, and sequelae, extensively explain autism spectrum disorder symptomatology. Brain Sci. 9(6), 130 (2019)

    Article  Google Scholar 

  63. Wu, Q., Hao, J.K.: A review on algorithms for maximum clique problems. Eur. J. Oper. Res. 242(3), 693–709 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  64. Wu, Z., Luo, Y., Gao, Yu., Han, Y., Wu, K., Li, X.: The role of frontal and occipital cortices in processing sustained visual attention in young adults with attention-deficit/hyperactivity disorder: a functional near-infrared spectroscopy study. Neurosci. Bull. 36(6), 659–663 (2020). https://doi.org/10.1007/s12264-020-00492-9

    Article  Google Scholar 

  65. Yan, Y., Zhu, J., Duda, M., Solarz, E., Sripada, C., Koutra, D.: GroupINN: grouping-based interpretable neural network for classification of limited, noisy brain data. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 772–782 (2019)

    Google Scholar 

  66. Ying, R., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: GNN explainer: a tool for post-hoc explanation of graph neural networks. arXiv preprint arXiv:1903.03894 (2019)

  67. You, J., Gomes-Selman, J.M., Ying, R., Leskovec, J.: Identity-aware graph neural networks. In: AAAI Conference on Artificial Intelligence, pp. 10737–10745 (2021)

    Google Scholar 

  68. Yuan, H., Tang, J., Hu, X., Ji, S.: XGNN: towards model-level explanations of graph neural networks. In: SIGKDD, pp. 430–438 (2020)

    Google Scholar 

  69. Yuan, H., Yu, H., Gui, S., Ji, S.: Explainability in graph neural networks: a taxonomic survey. IEEE Trans. Pattern Anal. Mach. Intell. 45, 5782–5799 (2022)

    Google Scholar 

  70. Yuan, H., Yu, H., Wang, J., Li, K., Ji, S.: On explainability of graph neural networks via subgraph explorations. In: ICML, pp. 12241–12252 (2021)

    Google Scholar 

  71. Zhang, Y., Defazio, D., Ramesh, A.: ReLEx: a model-agnostic relational model explainer. In: AIES, pp. 1042–1049 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Abrate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abrate, C., Preti, G., Bonchi, F. (2023). Counterfactual Explanations for Graph Classification Through the Lenses of Density. In: Longo, L. (eds) Explainable Artificial Intelligence. xAI 2023. Communications in Computer and Information Science, vol 1901. Springer, Cham. https://doi.org/10.1007/978-3-031-44064-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44064-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44063-2

  • Online ISBN: 978-3-031-44064-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics