[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Recurrent Self Fusion: Iterative Denoising for Consistent Retinal OCT Segmentation

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2023)

Abstract

Optical coherence tomography (OCT) is a valuable imaging technique in ophthalmology, providing high-resolution, cross-sectional images of the retina for early detection and monitoring of various retinal and neurological diseases. However, discrepancies in retinal layer thickness measurements among different OCT devices pose challenges for data comparison and interpretation, particularly in longitudinal analyses. This work introduces the idea of a recurrent self fusion (RSF) algorithm to address this issue. Our RSF algorithm, built upon the self fusion methodology, iteratively denoises retinal OCT images. A deep learning-based retinal OCT segmentation algorithm is employed for downstream analyses. A large dataset of paired OCT scans acquired on both a Spectralis and Cirrus OCT device are used for validation. The results demonstrate that the RSF algorithm effectively reduces speckle contrast and enhances the consistency of retinal OCT segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/pyushkevich/greedy.

References

  1. Alsaih, K., Lemaitre, G., Rastgoo, M., Massich, J., Sidibé, D., Meriaudeau, F.: Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT images. Biomed. Eng. Online 16, 1–12 (2017)

    Article  Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imag. 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  3. Bhargava, P., et al.: Applying an open-source segmentation algorithm to different OCT devices in multiple sclerosis patients and healthy controls: implications for clinical trials. Multiple Sclerosis Int. 2015 (2015)

    Google Scholar 

  4. Chiu, S.J., Allingham, M.J., Mettu, P.S., Cousins, S.W., Izatt, J.A., Farsiu, S.: Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomed. Opt. Express 6(4), 1172–1194 (2015)

    Article  Google Scholar 

  5. He, Y., et al.: Structured layer surface segmentation for retina OCT using fully convolutional regression networks. Med. Image Anal. 68, 101856 (2021)

    Google Scholar 

  6. He, Y., et al.: Fully convolutional boundary regression for retina OCT segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 120–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_14

  7. Huang, D., et al.: Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Article  Google Scholar 

  8. Lang, A., et al.: Retinal layer segmentation of macular oct images using boundary classification. Biomed. Opt. Express 4(7), 1133–1152 (2013)

    Google Scholar 

  9. Leite, M.T., et al.: Agreement among spectral-domain optical coherence tomography instruments for assessing retinal nerve fiber layer thickness. Am. J. of Ophthalmol. 151(1), 85–92 (2011)

    Google Scholar 

  10. Liu, Y., Zuo, L., Han, S., Xue, Y., Prince, J.L., Carass, A.: Coordinate translator for learning deformable medical image registration. In: Multiscale Multimodal Medical Imaging: Third International Workshop, MMMI 2022, Held in Conjunction with MICCAI 2022, Singapore, 22 September 2022, Proceedings, MICCAI 2022. LNCS, vol. 13594, pp. 98–109. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18814-5_10

  11. Oguz, I., Malone, J.D., Atay, Y., Tao, Y.K.: Self-fusion for OCT noise reduction. In: Medical Imaging 2020: Image Processing, vol. 11313, pp. 45–50. SPIE (2020)

    Google Scholar 

  12. Patel, N.B., Wheat, J.L., Rodriguez, A., Tran, V., Harwerth, R.S.: Agreement between retinal nerve fiber layer measures from Spectralis and Cirrus spectral domain OCT. Optomet. Vis. Sci. 89(5), E652 (2012)

    Article  Google Scholar 

  13. Reaungamornrat, S., Carass, A., He, Y., Saidha, S., Calabresi, P.A., Prince, J.L.: Inter-scanner variation independent descriptors for constrained diffeomorphic Demons registration of retinal OCT. In: Proceedings of SPIE Medical Imaging (SPIE-MI 2018), Houston, 10–15 Feb. 2018, vol. 10574, p. 105741B (2018)

    Google Scholar 

  14. Rothman, A., et al.: Retinal measurements predict 10-year disability in multiple sclerosis. Annal. Clin. Transl. Neurol. 6(2), 222–232 (2019)

    Article  Google Scholar 

  15. Saidha, S., et al.: Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 134(2), 518–533 (2011)

    Article  Google Scholar 

  16. Saidha, S., et al.: Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Multip. Scleros. J. 17(12), 1449–1463 (2011)

    Article  Google Scholar 

  17. Saidha, S., et al.: Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol. 11(11), 963–972 (2012)

    Article  Google Scholar 

  18. Sotoudeh-Paima, S., Jodeiri, A., Hajizadeh, F., Soltanian-Zadeh, H.: Multi-scale convolutional neural network for automated AMD classification using retinal OCT images. Comput. Biol. Med. 144, 105368 (2022)

    Article  Google Scholar 

  19. Talman, L.S., et al.: Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Annal. Neurol. 67(6), 749–760 (2010)

    Google Scholar 

  20. Wang, H., Suh, J.W., Das, S.R., Pluta, J.B., Craige, C., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion. IEEE Trans. Patt. Anal. Mach. Intell. 35(3), 611–623 (2012)

    Article  Google Scholar 

  21. Yushkevich, P.A., Pluta, J., Wang, H., Wisse, L.E., Das, S., Wolk, D.: IC-P-174: fast automatic segmentation of hippocampal subfields and medial temporal lobe subregions in 3 Tesla and 7 Tesla T2-weighted MRI. Alzheimer’s Dementia 12, P126–P127 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH under NEI grant R01-EY024655 (PI: J.L. Prince), NEI grant R01-EY032284 (PI: J.L. Prince) and in part by the Intramural Research Program of the NIH, National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuwen Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, S. et al. (2023). Recurrent Self Fusion: Iterative Denoising for Consistent Retinal OCT Segmentation. In: Antony, B., Chen, H., Fang, H., Fu, H., Lee, C.S., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2023. Lecture Notes in Computer Science, vol 14096. Springer, Cham. https://doi.org/10.1007/978-3-031-44013-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44013-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44012-0

  • Online ISBN: 978-3-031-44013-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics