Abstract
Optical coherence tomography (OCT) is a valuable imaging technique in ophthalmology, providing high-resolution, cross-sectional images of the retina for early detection and monitoring of various retinal and neurological diseases. However, discrepancies in retinal layer thickness measurements among different OCT devices pose challenges for data comparison and interpretation, particularly in longitudinal analyses. This work introduces the idea of a recurrent self fusion (RSF) algorithm to address this issue. Our RSF algorithm, built upon the self fusion methodology, iteratively denoises retinal OCT images. A deep learning-based retinal OCT segmentation algorithm is employed for downstream analyses. A large dataset of paired OCT scans acquired on both a Spectralis and Cirrus OCT device are used for validation. The results demonstrate that the RSF algorithm effectively reduces speckle contrast and enhances the consistency of retinal OCT segmentation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Alsaih, K., Lemaitre, G., Rastgoo, M., Massich, J., Sidibé, D., Meriaudeau, F.: Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT images. Biomed. Eng. Online 16, 1–12 (2017)
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imag. 38(8), 1788–1800 (2019)
Bhargava, P., et al.: Applying an open-source segmentation algorithm to different OCT devices in multiple sclerosis patients and healthy controls: implications for clinical trials. Multiple Sclerosis Int. 2015 (2015)
Chiu, S.J., Allingham, M.J., Mettu, P.S., Cousins, S.W., Izatt, J.A., Farsiu, S.: Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomed. Opt. Express 6(4), 1172–1194 (2015)
He, Y., et al.: Structured layer surface segmentation for retina OCT using fully convolutional regression networks. Med. Image Anal. 68, 101856 (2021)
He, Y., et al.: Fully convolutional boundary regression for retina OCT segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 120–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_14
Huang, D., et al.: Optical coherence tomography. Science 254(5035), 1178–1181 (1991)
Lang, A., et al.: Retinal layer segmentation of macular oct images using boundary classification. Biomed. Opt. Express 4(7), 1133–1152 (2013)
Leite, M.T., et al.: Agreement among spectral-domain optical coherence tomography instruments for assessing retinal nerve fiber layer thickness. Am. J. of Ophthalmol. 151(1), 85–92 (2011)
Liu, Y., Zuo, L., Han, S., Xue, Y., Prince, J.L., Carass, A.: Coordinate translator for learning deformable medical image registration. In: Multiscale Multimodal Medical Imaging: Third International Workshop, MMMI 2022, Held in Conjunction with MICCAI 2022, Singapore, 22 September 2022, Proceedings, MICCAI 2022. LNCS, vol. 13594, pp. 98–109. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-18814-5_10
Oguz, I., Malone, J.D., Atay, Y., Tao, Y.K.: Self-fusion for OCT noise reduction. In: Medical Imaging 2020: Image Processing, vol. 11313, pp. 45–50. SPIE (2020)
Patel, N.B., Wheat, J.L., Rodriguez, A., Tran, V., Harwerth, R.S.: Agreement between retinal nerve fiber layer measures from Spectralis and Cirrus spectral domain OCT. Optomet. Vis. Sci. 89(5), E652 (2012)
Reaungamornrat, S., Carass, A., He, Y., Saidha, S., Calabresi, P.A., Prince, J.L.: Inter-scanner variation independent descriptors for constrained diffeomorphic Demons registration of retinal OCT. In: Proceedings of SPIE Medical Imaging (SPIE-MI 2018), Houston, 10–15 Feb. 2018, vol. 10574, p. 105741B (2018)
Rothman, A., et al.: Retinal measurements predict 10-year disability in multiple sclerosis. Annal. Clin. Transl. Neurol. 6(2), 222–232 (2019)
Saidha, S., et al.: Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 134(2), 518–533 (2011)
Saidha, S., et al.: Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Multip. Scleros. J. 17(12), 1449–1463 (2011)
Saidha, S., et al.: Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol. 11(11), 963–972 (2012)
Sotoudeh-Paima, S., Jodeiri, A., Hajizadeh, F., Soltanian-Zadeh, H.: Multi-scale convolutional neural network for automated AMD classification using retinal OCT images. Comput. Biol. Med. 144, 105368 (2022)
Talman, L.S., et al.: Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Annal. Neurol. 67(6), 749–760 (2010)
Wang, H., Suh, J.W., Das, S.R., Pluta, J.B., Craige, C., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion. IEEE Trans. Patt. Anal. Mach. Intell. 35(3), 611–623 (2012)
Yushkevich, P.A., Pluta, J., Wang, H., Wisse, L.E., Das, S., Wolk, D.: IC-P-174: fast automatic segmentation of hippocampal subfields and medial temporal lobe subregions in 3 Tesla and 7 Tesla T2-weighted MRI. Alzheimer’s Dementia 12, P126–P127 (2016)
Acknowledgements
This work was supported by the NIH under NEI grant R01-EY024655 (PI: J.L. Prince), NEI grant R01-EY032284 (PI: J.L. Prince) and in part by the Intramural Research Program of the NIH, National Institute on Aging.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wei, S. et al. (2023). Recurrent Self Fusion: Iterative Denoising for Consistent Retinal OCT Segmentation. In: Antony, B., Chen, H., Fang, H., Fu, H., Lee, C.S., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2023. Lecture Notes in Computer Science, vol 14096. Springer, Cham. https://doi.org/10.1007/978-3-031-44013-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-44013-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-44012-0
Online ISBN: 978-3-031-44013-7
eBook Packages: Computer ScienceComputer Science (R0)