Abstract
Federated learning allows for training deep learning models from various sources (e.g., hospitals) without sharing patient information, but only the model weights. Two central problems arise when sending the updated weights to the central node in a federation: the imbalance of the datasets and data heterogeneity caused by differences in scanners or acquisition protocols. In this paper, we benchmark the federated average algorithm and adapt two weighting functions to counteract the effect of data imbalance. The approaches are validated on a segmentation task with synthetic data from imbalanced centers, and on two multi-centric datasets with the clinically relevant tasks of stroke infarct core prediction and brain tumor segmentation. The results show that accounting for the imbalance in the data sources improves the federated average aggregation in different perfusion CT and structural MRI images in the ISLES and BraTS19 datasets, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)
Chang, K., et al.: Distributed deep learning networks among institutions for medical imaging. J. Am. Med. Inform. Assoc. 25(8), 945–954 (2018)
Chen, X., et al.: Recent advances and clinical applications of deep learning in medical image analysis. Med. Image Anal. 102444 (2022)
Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9268–9277 (2019)
Diao, E., Ding, J., Tarokh, V.: Heterofl: computation and communication efficient federated learning for heterogeneous clients. arXiv preprint arXiv:2010.01264 (2020)
Hakim, A., et al.: Predicting infarct core from computed tomography perfusion in acute ischemia with machine learning: lessons from the isles challenge. Stroke 52(7), 2328–2337 (2021)
Kairouz, P., et al.: Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019)
Karimireddy, S.P., et al.: Mime: mimicking centralized stochastic algorithms in federated learning. arXiv preprint arXiv:2008.03606 (2020)
Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: SCAFFOLD: stochastic controlled averaging for federated learning. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 5132–5143. PMLR (2020). https://proceedings.mlr.press/v119/karimireddy20a.html
Kerfoot, E., Clough, J., Oksuz, I., Lee, J., King, A.P., Schnabel, J.A.: Left-ventricle quantification using residual U-Net. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 371–380. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_40
Li, W., et al.: Privacy-preserving federated brain tumour segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 133–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_16
Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: FEDDG: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1013–1023 (2021)
McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)
Minaee, S., Boykov, Y.Y., Porikli, F., Plaza, A.J., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2021)
Myronenko, A.: 3D MRI Brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28
Pati, S., et al.: Federated learning enables big data for rare cancer boundary detection. arXiv preprint arXiv:2204.10836 (2022)
Remedios, S.W., Butman, J.A., Landman, B.A., Pham, D.L.: Federated gradient averaging for multi-site training with momentum-based optimizers. In: Albarqouni, S., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 170–180. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_17
Rieke, N., et al.: The future of digital health with federated learning. NPJ Digit. Med. 3(1), 1–7 (2020)
Roth, H.R., et al.: Federated learning for breast density classification: a real-world implementation. In: Albarqouni, S., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 181–191. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_18
Sheller, M.J., et al.: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 10(1), 1–12 (2020)
Tang, Y., et al.: Self-supervised pre-training of swin transformers for 3D medical image analysis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20730–20740 (2022)
Acknowledgements
This work was co-financed by Innosuisse (grant 43087.1 IP-LS).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Otálora, S. et al. (2023). Weighting Schemes for Federated Learning in Heterogeneous and Imbalanced Segmentation Datasets. In: Bakas, S., et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2022. Lecture Notes in Computer Science, vol 13769. Springer, Cham. https://doi.org/10.1007/978-3-031-33842-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-33842-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-33841-0
Online ISBN: 978-3-031-33842-7
eBook Packages: Computer ScienceComputer Science (R0)