[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

From Approximate to Exact Integer Programming

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13904))

  • 785 Accesses

Abstract

Approximate integer programming is the following: For a given convex body \(K \subseteq \mathbb {R}^n\), either determine whether \(K \cap \mathbb {Z}^n\) is empty, or find an integer point in the convex body \(2\cdot (K - c) +c\) which is K, scaled by 2 from its center of gravity c. Approximate integer programming can be solved in time \(2^{O(n)}\) while the fastest known methods for exact integer programming run in time \(2^{O(n)} \cdot n^n\). So far, there are no efficient methods for integer programming known that are based on approximate integer programming. Our main contribution are two such methods, each yielding novel complexity results.

First, we show that an integer point \(x^* \in (K \cap \mathbb {Z}^n)\) can be found in time \(2^{O(n)}\), provided that the remainders of each component \(x_i^* \mod \ell \) for some arbitrarily fixed \(\ell \ge 5(n+1)\) of \(x^*\) are given. The algorithm is based on a cutting-plane technique, iteratively halving the volume of the feasible set. The cutting planes are determined via approximate integer programming. Enumeration of the possible remainders gives a \(2^{O(n)}n^n\) algorithm for general integer programming. This matches the current best bound of an algorithm by Dadush (2012) that is considerably more involved. Our algorithm also relies on a new asymmetric approximate Carathéodory theorem that might be of interest on its own.

Our second method concerns integer programming problems in standard equation form \(Ax = b, 0 \le x \le u, \, x \in \mathbb {Z}^n\) . Such a problem can be reduced to the solution of \(\prod _i O(\log u_i +1)\) approximate integer programming problems. This implies, for example that knapsack or subset-sum problems with polynomial variable range \(0 \le x_i \le p(n)\) can be solved in time \((\log n)^{O(n)}\). For these problems, the best running time so far was \(n^n \cdot 2^{O(n)}\).

A full version of this paper can be found under https://arxiv.org/abs/2211.03859.

D. Dadush—Supported by ERC Starting Grant no. 805241-QIP.

F. Eisenbrand—Supported by the Swiss National Science Foundation (SNSF) grant 185030 and 207365.

T. Rothvoss—Supported by NSF CAREER grant 1651861 and a David & Lucile Packard Foundation Fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miklós Ajtai, R.K., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 601–610 (2001)

    Google Scholar 

  2. Alon, N., Vũ, V.H.: Anti-hadamard matrices, coin weighing, threshold gates, and indecomposable hypergraphs. J. Comb. Theory Ser. A 79(1), 133–160 (1997)

    Google Scholar 

  3. Artstein-Avidan, S., Giannopoulos, A., Milman, V.D.: Asymptotic geometric analysis. Part I, Volume 202 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2015)

    Google Scholar 

  4. Barman, S.: Approximating nash equilibria and dense bipartite subgraphs via an approximate version of Caratheodory’s theorem. In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, pp. 361–369 (2015)

    Google Scholar 

  5. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)

    Article  MATH  Google Scholar 

  6. Bertsimas, D., Vempala, S.: Solving convex programs by random walks. J. ACM (JACM) 51(4), 540–556 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blömer, J., Naewe, S.: Sampling methods for shortest vectors, closest vectors and successive minima. Theor. Comput. Sci. 410(18), 1648–1665 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bringmann, K.: A near-linear pseudopolynomial time algorithm for subset sum. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1073–1084. SIAM (2017)

    Google Scholar 

  9. Cook, W., Hartmann, M., Kannan, R., McDiarmid, C.: On integer points in polyhedra. Combinatorica 12(1), 27–37 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dadush, D.: Integer Programming, Lattice Algorithms, and Deterministic Volume Estimation. Georgia Institute of Technology (2012)

    Google Scholar 

  11. Dadush, D.: A randomized sieving algorithm for approximate integer programming. Algorithmica 70(2), 208–244 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dyer, M., Frieze, A., Kannan, R.: A random polynomial-time algorithm for approximating the volume of convex bodies. J. ACM 38(1), 1–17 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eisenbrand, F., Hähnle, N., Niemeier, M.: Covering cubes and the closest vector problem. In: Proceedings of the Twenty-Seventh Annual Symposium on Computational Geometry, pp. 417–423 (2011)

    Google Scholar 

  14. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer programming using the Steinitz lemma. ACM Trans. Algorithms (TALG) 16(1), 1–14 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics, vol. 2. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-642-78240-4

  17. Jansen, K., Rohwedder, L.: On integer programming and convolution. In: 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

    Google Scholar 

  18. Jiang, H.: Minimizing convex functions with integral minimizers. In: SODA, pp. 976–985. SIAM (2021)

    Google Scholar 

  19. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Knop, D., Pilipczuk, M., Wrochna, M.: Tight complexity lower bounds for integer linear programming with few constraints. ACM Trans. Comput. Theory (TOCT) 12(3), 1–19 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J. ACM (JACM) 32(1):229–246 (1985)

    Google Scholar 

  22. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische annalen 261(ARTICLE), 515–534 (1982)

    Google Scholar 

  23. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

    Google Scholar 

  24. Micciancio, D., Goldwasser, S.: Complexity of lattice problems - a cryptograhic perspective. The Kluwer International Series in Engineering and Computer Science, vol. 671. Springer, New York (2002). https://doi.org/10.1007/978-1-4615-0897-7

  25. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 351–358 (2010)

    Google Scholar 

  26. Mirrokni, V., Leme, R.P., Vladu, A., Wong, S.C.: Tight bounds for approximate Carathéodory and beyond. In: International Conference on Machine Learning, pp. 2440–2448. PMLR (2017)

    Google Scholar 

  27. Nemhauser, G.L., Wolsey, L.A.: Integer programming. In: Nemhauser, G.L., et al. (eds.) Optimization. Handbooks in Operations Research and Management Science, chapter VI, vol. 1, pp. 447–527. Elsevier (1989)

    Google Scholar 

  28. Novikoff, A.B.: On convergence proofs for perceptrons. Technical report, Office of Naval Research, Washington, D.C. (1963)

    Google Scholar 

  29. Polak, A., Rohwedder, L., Węgrzycki, K.: Knapsack and subset sum with small items. In: 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), number CONF, pp. 106–1. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

    Google Scholar 

  30. Schrijver, A.: Polyhedral combinatorics. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, chapter 30, vol. 2, pp. 1649–1704. Elsevier (1995)

    Google Scholar 

  31. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, Hoboken (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Rothvoss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dadush, D., Eisenbrand, F., Rothvoss, T. (2023). From Approximate to Exact Integer Programming. In: Del Pia, A., Kaibel, V. (eds) Integer Programming and Combinatorial Optimization. IPCO 2023. Lecture Notes in Computer Science, vol 13904. Springer, Cham. https://doi.org/10.1007/978-3-031-32726-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32726-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32725-4

  • Online ISBN: 978-3-031-32726-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics