Abstract
We consider the computational problem of finding short paths in the skeleton of the perfect matching polytope of a bipartite graph. We prove that unless \(\textsf{P}=\textsf{NP}\), there is no polynomial-time algorithm that computes a path of constant length between two vertices at distance two of the perfect matching polytope of a bipartite graph. Conditioned on \(\textsf{P}\ne \textsf{NP}\), this disproves a conjecture by Ito, Kakimura, Kamiyama, Kobayashi and Okamoto [SIAM Journal on Discrete Mathematics, 36(2), pp. 1102-1123 (2022)]. Assuming the Exponential Time Hypothesis we prove the stronger result that there exists no polynomial-time algorithm computing a path of length at most \(\left( \frac{1}{4}-o(1)\right) \frac{\log N}{\log \log N}\) between two vertices at distance two of the perfect matching polytope of an N-vertex bipartite graph. These results remain true if the bipartite graph is restricted to be of maximum degree three.
The above has the following interesting implication for the performance of pivot rules for the simplex algorithm on simply-structured combinatorial polytopes: If \(\textsf{P}\ne \textsf{NP}\), then for every simplex pivot rule executable in polynomial time and every constant \(k \in \mathbb {N}\) there exists a linear program on a perfect matching polytope and a starting vertex of the polytope such that the optimal solution can be reached using only two monotone non-degenerate steps from the starting vertex, yet the pivot rule will require at least k non-degenerate steps to reach the optimal solution. This result remains true in the more general setting of pivot rules for so-called circuit-augmentation algorithms.
R. Steiner–Supported by an ETH Postdoctoral Fellowship.
A full version of this article can be found at https://arxiv.org/abs/2210.14608. Proofs of statements marked with \(\star \) are deferred to the full version.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We note that the sole prupose of splitting vertices into binary trees is to restrict the maximum degree of the graph, the remainder of the proof is only based on the 4-cycles in the middle of the gadgets.
References
Adler, I., Papadimitriou, C., Rubinstein, A.: On simplex pivoting rules and complexity theory. In: Lee, J., Vygen, J. (eds.) IPCO 2014. LNCS, vol. 8494, pp. 13–24. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07557-0_2
Aichholzer, O., et al.: Flip distances between graph orientations. Algorithmica 83(1), 116–143 (2021)
Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
Avis, D., Friedmann, O.: An exponential lower bound for Cunningham’s rule. Math. Program. 161(1–2), 271–305 (2017)
Barahona, F., Tardos, É.: Note on Weintraub’s minimum-cost circulation algorithm. SIAM J. Comput. 18(3), 579–583 (1989)
Björklund, A., Husfeldt, T., Khanna, S.: Approximating longest directed paths and cycles. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 222–233. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-8_21
Bland, R.G.: New finite pivoting rules for the simplex method. Math. Oper. Res. 2(2), 103–107 (1977)
Bonamy, M., et al.: The perfect matching reconfiguration problem. In: Rossmanith, P., Heggernes, P., Katoen, J. (eds.) 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, August 26–30, 2019, Aachen, Germany. LIPIcs, vol. 138, pp. 80:1–80:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)
Borgwardt, S., Brand, C., Feldmann, A.E., Koutecký, M.: A note on the approximability of deepest-descent circuit steps. Oper. Res. Lett. 49(3), 310–315 (2021)
Borgwardt, S., Finhold, E., Hemmecke, R.: On the circuit diameter of dual transportation polyhedra. SIAM J. Discrete Math. 29(1), 113–121 (2015)
Borgwardt, S., Viss, C.: A polyhedral model for enumeration and optimization over the set of circuits. Discret. Appl. Math. 308, 68–83 (2022)
Bousquet, N., Hatanaka, T., Ito, T., Mühlenthaler, M.: Shortest reconfiguration of matchings. In: Sau, I., Thilikos, D.M. (eds.) WG 2019. LNCS, vol. 11789, pp. 162–174. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30786-8_13
Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory, Ser. B 18(2), 138–154 (1975)
Cioabă, S.M., Royle, G., Tan, Z.K.: On the flip graphs on perfect matchings of complete graphs and signed reversal graphs. Australas. J. Comb. 81, 480–497 (2021)
De Loera, J.A., Hemmecke, R., Lee, J.: On augmentation algorithms for linear and integer-linear programming: from Edmonds-Karp to Bland and beyond. SIAM J. Optim. 25(4), 2494–2511 (2015)
De Loera, J.A., Kafer, S., Sanità, L.: Pivot rules for circuit-augmentation algorithms in linear optimization. SIAM J. Optim. 32(3), 2156–2179 (2022)
Diaconis, P.W., Holmes, S.P.: Matchings and phylogenetic trees. Proc. Natl. Acad. Sci. USA 95(25), 14600–14602 (1998)
Diaconis, P.W., Holmes, S.P.: Random walks on trees and matchings. Electron. J. Probab. 7(6), 1–17 (2002)
Disser, Y., Friedmann, O., Hopp, A.V.: An exponential lower bound for Zadeh’s pivot rule. CoRR abs/1911.01074 (2019). http://arxiv.org/abs/1911.01074
Disser, Y., Skutella, M.: The simplex algorithm is NP-mighty. ACM Trans. Algorithms 15(1), 5:1–5:19 (2019)
Fearnley, J., Savani, R.: The complexity of the simplex method. In: Servedio, R.A., Rubinfeld, R. (eds.) Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14–17, 2015, pp. 201–208. ACM (2015)
Gabow, H.N., Nie, S.: Finding a long directed cycle. ACM Trans. Algorithms 4(1), 7:1–7:21 (2008)
Gima, T., Ito, T., Kobayashi, Y., Otachi, Y.: Algorithmic meta-theorems for combinatorial reconfiguration revisited. In: Chechik, S., Navarro, G., Rotenberg, E., Herman, G. (eds.) 30th Annual European Symposium on Algorithms, ESA 2022, September 5–9, 2022, Berlin/Potsdam, Germany. LIPIcs, vol. 244, pp. 61:1–61:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)
Goldfarb, D., Sit, W.Y.: Worst case behavior of the steepest edge simplex method. Discret. Appl. Math. 1(4), 277–285 (1979)
Gupta, M., Kumar, H., Misra, N.: On the complexity of optimal matching reconfiguration. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOFSEM 2019. LNCS, vol. 11376, pp. 221–233. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10801-4_18
Hansen, T.D., Zwick, U.: An improved version of the random-facet pivoting rule for the simplex algorithm. In: Servedio, R.A., Rubinfeld, R. (eds.) Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14–17, 2015, pp. 209–218. ACM (2015)
van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S., Wildon, M. (eds.) Surveys in Combinatorics 2013, London Mathematical Society Lecture Note Series, vol. 409, pp. 127–160. Cambridge University Press (2013)
Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci. 412(12–14), 1054–1065 (2011)
Ito, T., Kakimura, N., Kamiyama, N., Kobayashi, Y., Okamoto, Y.: Shortest reconfiguration of perfect matchings via alternating cycles. SIAM J. Discret. Math. 36(2), 1102–1123 (2022)
Iwata, S.: On matroid intersection adjacency. Discret. Math. 242(1–3), 277–281 (2002)
Jeroslow, R.G.: The simplex algorithm with the pivot rule of maximizing criterion improvement. Discret. Math. 4(4), 367–377 (1973)
Kafer, S., Pashkovich, K., Sanità, L.: On the circuit diameter of some combinatorial polytopes. SIAM J. Discret. Math. 33(1), 1–25 (2019)
Kaminski, M., Medvedev, P., Milanic, M.: Complexity of independent set reconfigurability problems. Theor. Comput. Sci. 439, 9–15 (2012)
Klee, V., Minty, G.J.: How good is the simplex algorithm? In: Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin), pp. 159–175. Academic Press, New York (1972)
Monroy, R.F., Flores-Peñaloza, D., Huemer, C., Hurtado, F., Wood, D.R., Urrutia, J.: On the chromatic number of some flip graphs. Discret. Math. Theor. Comput. Sci. 11(2), 47–56 (2009)
Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)
Santos, F.: A counterexample to the Hirsch conjecture. Ann. Math. 176(1), 383–412 (2012)
Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and Combinatorics, vol. 24. Springer (2003)
Williams, V.V.: On some fine-grained questions in algorithms and complexity. In: Proceedings of the International Congress of Mathematicians (ICM 2018), pp. 3447–3487. World Scientific (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cardinal, J., Steiner, R. (2023). Inapproximability of Shortest Paths on Perfect Matching Polytopes. In: Del Pia, A., Kaibel, V. (eds) Integer Programming and Combinatorial Optimization. IPCO 2023. Lecture Notes in Computer Science, vol 13904. Springer, Cham. https://doi.org/10.1007/978-3-031-32726-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-32726-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-32725-4
Online ISBN: 978-3-031-32726-1
eBook Packages: Computer ScienceComputer Science (R0)