[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cross-Modal Retrieval Based on Deep Hashing in the Context of Data Space

  • Conference paper
  • First Online:
Cyber Security Intelligence and Analytics (CSIA 2023)

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 173))

  • 443 Accesses

Abstract

The advent of the Big Data era has led to the heterogeneity of data from multiple sources, and traditional database management techniques are overstretched in the face of the increasing complexity and variability of data. As a result, the concept of data spaces has been developed. The multiple and heterogeneous nature of data in the current context makes it necessary to provide a variety of query methods in the data space. As heterogeneous data contains various types of data structures, and traditional information retrieval mainly targets text documents to establish indexing relationships, it cannot provide queries to meet the needs of multiple sources of heterogeneous data. Therefore, this paper compares the current advanced algorithms used in cross-modal retrieval based on the data space to further understand cross-modal retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Molaei, S., Farahbakhsh, R., Salehi, M., Crespi, N.: Identifying influential nodes in heterogeneous networks. Expert Syst. Appl. 160, 113580 (2020)

    Google Scholar 

  2. Chairatanakul, N., Liu, X., Murata, T.: Pgra: projected graph relation-feature attention network for heterogeneous information network embedding. Inf. Sci. 570, 769–794 (2021)

    Article  MathSciNet  Google Scholar 

  3. Möller, J., Jankowski., Hahn, A.: Towards an architecture to support data access in research data spaces. In: 2021 IEEE 22nd International Conference on Information Reuse and Integration for Data Science (IRI), pp. 310–317 (2021)

    Google Scholar 

  4. Taan, A.A., Khan, S., Raza, A., Hanif, A., Anwar, H.: Comparative analysis of information retrieval models on Quran dataset in cross-language information retrieval systems. IEEE Access 9, 169056–169067 (2021)

    Article  Google Scholar 

  5. Afrati, F., Damigos, M.G., Stasinopoulos, N.: SQL-like query language and referential constraints on tree-structured data. In: 25th International Database Engineering & Applications Symposium (IDEAS 2021). Association for Computing Machinery, New York, NY, USA, pp. 1–10 (2021).

    Google Scholar 

  6. Subramaniam, S, Haw, S.C., Soon, L.K.: Improved centralized xml query processing using distributed query workloadt. IEEE Access 9, 29127–29142 (2021)

    Google Scholar 

  7. Franklin, M., Halevy, A., Maier, D.: From databases to dataspaces: a new abstraction for information management. Sigmod Record 34(4), 27–33 (2005)

    Article  Google Scholar 

  8. Beverungen, D., Hess, T., Kster, A., Lehrer, C.: From private digital platforms to public data spaces: implications for the digital transformation. Electron. Mark. 32, 493-501 (2022)

    Google Scholar 

  9. Agostinetti, N.P., Kotsi, M., Malcolm, A.: Exploration of data space through trans-dimensional sampling: a case study of 4D seismics. J. Geophys. Res.-Solid Earth 126(12), e2021JB022343 (2022)

    Google Scholar 

  10. Dittrich, J.P., Salles, M., Kossmann, D., Blunschi, L.: iMeMex: escapes from the personal information jungle. In: International Conference on Very Large Data Bases. VLDB Endowment, pp. 1306–1309 (2005)

    Google Scholar 

  11. Dong, X., Halevy, A.: A platform for personal information management and integration. In: Ancient Greek philosophy, pp.119–130 (2005)

    Google Scholar 

  12. Gemmell, J., Bell, G., Lueder, R., Drucker, S., Wong, C.: Mylifebits: fulfilling the memex vision. In: Acm Multimedia System J. pp.235–238 (2002)

    Google Scholar 

  13. Curry, E.: Dataspaces: fundamentals principles and techniques. In: Real-time Linked Dataspaces: Enabling Data Ecosystems for Intelligent Systems Cham, pp. 45–62 (2020). https://doi.org/10.1007/978-3-030-29665-0_3

  14. Salakhutdinov, R., Hinton, G.: Semantic hashing. Int. J. Approximate Reasoning 50(7), 969–978 (2009)

    Article  Google Scholar 

  15. Xia, R., Pan, Y., Lai, H., Liu, C., Yan, S.: Supervised hashing for image retrieval via image representation learning. Proc. Natl. Conf. Artif. Intell. 3, 2156–2162 (2014)

    Google Scholar 

  16. Fayadh, A., Şaban, Ö., Ammar, A., Polat, K.: An effective hashing method using W-Shaped contrastive loss for imbalanced datasets. Expert Syst. Appl. 204, 117612 (2022)

    Article  Google Scholar 

  17. Kumar, S., Udupa, R.: Learning hash functions for cross-view similarity searchBronstein. In: Twenty-Second International Joint Conference on Artificial Intelligence, pp. 1360–1365 (2011)

    Google Scholar 

  18. Bronstein, M., Bronstein, A., Michel, F., Paragios N.: Data fusion through cross-modality metric learning using similarity-sensitive hashing. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3594–3601 (2010)

    Google Scholar 

  19. Jiang, Q.Y., Li, W.J.: Deep cross-modal hashing. In: IEEE Conference on Computer Vision & Pattern Recognition, pp. 3270–3278 (2017)

    Google Scholar 

  20. Gattupalli, V., Zhuo, Y., Li, B.: Weakly supervised deep image hashing through tag embeddings. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 10375–10384 (2019)

    Google Scholar 

  21. Ganin, Y., Ustinova, E., Ajakan, H., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2030 (2015)

    Google Scholar 

  22. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5385–5394 (2017)

    Google Scholar 

  23. Wang, D., Wang, Q., Gao, X.: Robust and flexible discrete hashing for cross-modal similarity search. IEEE Trans. Circ. Syst. Video Technol. 28(10), 2703–2715 (2017)

    Google Scholar 

  24. Wu, G., et al.: Unsupervised deep hashing via binary latent factor models for large-scale cross-modal retrieval. In: Twenty-Seventh International Joint Conference on Artificial Intelligence, pp.2854–2860 (2018)

    Google Scholar 

  25. Bhunia, A. K., Chowdhury, P.N., Sain, A., Yang, Y., Xiang, T., Song, Y.Z.: More photos are all you need: semi-supervised learning for fine-grained sketch based image retrieval. In: 2021 IEEE/CVF Conference On Computer Vision and Pattern Recognition, CVPR 2021, pp. 4245–4254 (2021)

    Google Scholar 

  26. Vishnu, B., David, C., Ewan, B., Michael, K., Rahul, S., Matthew, B.: Pulsar candidate identification using semi-supervised generative adversarial networks. In: Monthly Notices of the Royal Astronomical Society, vol. 505, no. 1, pp. 1180–1194 (2021)

    Google Scholar 

  27. Wang, X., Liu, X., Hu, Z., Wang, N., Du, J.X.: Semi-supervised discrete hashing for efficient cross-modal retrieval. Multimedia Tools Appl. 79, 25335–25356 (2020)

    Google Scholar 

  28. Li, C., Deng, C., Li, N., Liu, W., Gao, X., Tao, D.: Self-supervised adversarial hashing networks for cross-modal retrieval. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, p. 18311749 (2018)

    Google Scholar 

  29. Peng, H., He, J., Chen, S., Wang, Y., Qiao, Y.: Dual-supervised attention network for deep cross-modal hashing. Pattern Recogn. Lett. 128, 333–339 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant number 2020YFB1707801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiwen Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, X., Niu, D., Feng, J. (2023). Cross-Modal Retrieval Based on Deep Hashing in the Context of Data Space. In: Xu, Z., Alrabaee, S., Loyola-González, O., Cahyani, N.D.W., Ab Rahman, N.H. (eds) Cyber Security Intelligence and Analytics. CSIA 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 173. Springer, Cham. https://doi.org/10.1007/978-3-031-31775-0_37

Download citation

Publish with us

Policies and ethics