[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Attention-guided Boundary Refinement on Anchor-free Temporal Action Detection

  • Conference paper
  • First Online:
Image Analysis (SCIA 2023)

Abstract

Modelling temporal dependencies is important for accurate action detection. In this work, we develop a temporal attention unit to mine the global dependencies among features from different temporal locations. Additionally, based on the developed temporal attention unit, we propose an attention-guided boundary refinement module for revising action prediction results. Besides, we integrate the proposed module into a contemporary anchor-free detector for performing temporal action detection. To evaluate the proposed method, experiments are carried out on two large-scale temporal action detection datasets, namely THUMOS14 and ActivityNet1.3 datasets. Experimental results show that the action detection performance is significantly boosted by the proposed temporal attention module which outperforms several state-of-the-art methods.

This work was supported by the Academy of Finland for Academy Professor project EmotionAI (grants 336116, 345122), project MiGA (grant 316765), the University of Oulu & The Academy of Finland Profi 7 (grant 352788), and Ministry of Education and Culture of Finland for AI forum project. As well, the authors wish to acknowledge CSC - IT Center for Science, Finland, for computational resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, Y., Wang, Y., Tong, Y., Yang, Y., Liu, Q., Liu, J.: Boundary content graph neural network for temporal action proposal generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 121–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_8

    Chapter  Google Scholar 

  2. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS-improving object detection with one line of code. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5561–5569 (2017)

    Google Scholar 

  3. Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: Activitynet: a large-scale video benchmark for human activity understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–970 (2015)

    Google Scholar 

  4. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  5. Chao, Y.W., Vijayanarasimhan, S., Seybold, B., Ross, D.A., Deng, J., Sukthankar, R.: Rethinking the faster R-CNN architecture for temporal action localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1130–1139 (2018)

    Google Scholar 

  6. Gao, J., Yang, Z., Chen, K., Sun, C., Nevatia, R.: Turn tap: temporal unit regression network for temporal action proposals. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3628–3636 (2017)

    Google Scholar 

  7. Jiang, Y.G., et al.: Thumos challenge: action recognition with a large number of classes (2014)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Lin, C., et al.: Learning salient boundary feature for anchor-free temporal action localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3320–3329 (2021)

    Google Scholar 

  10. Lin, T., Liu, X., Li, X., Ding, E., Wen, S.: BMN: boundary-matching network for temporal action proposal generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3889–3898 (2019)

    Google Scholar 

  11. Lin, T., Zhao, X., Shou, Z.: Single shot temporal action detection. In: Proceedings of the 25th ACM international conference on Multimedia, pp. 988–996 (2017)

    Google Scholar 

  12. Lin, T., Zhao, X., Su, H., Wang, C., Yang, M.: BSN: boundary sensitive network for temporal action proposal generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 3–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_1

    Chapter  Google Scholar 

  13. Long, F., Yao, T., Qiu, Z., Tian, X., Luo, J., Mei, T.: Gaussian temporal awareness networks for action localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 344–353 (2019)

    Google Scholar 

  14. Qiu, H., Ma, Y., Li, Z., Liu, S., Sun, J.: BorderDet: border feature for dense object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 549–564. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_32

    Chapter  Google Scholar 

  15. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. arXiv preprint arXiv:1406.2199 (2014)

  16. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  18. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  19. Xu, H., Das, A., Saenko, K.: R-c3d: Region Convolutional 3D Network for Temporal Activity detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5783–5792 (2017)

    Google Scholar 

  20. Yang, L., Peng, H., Zhang, D., Fu, J., Han, J.: Revisiting anchor mechanisms for temporal action localization. IEEE Trans. Image Process. 29, 8535–8548 (2020)

    Article  MATH  Google Scholar 

  21. Zhao, Y., Xiong, Y., Wang, L., Wu, Z., Tang, X., Lin, D.: Temporal action detection with structured segment networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2914–2923 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoying Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, H., Chen, H., Zhao, G. (2023). Attention-guided Boundary Refinement on Anchor-free Temporal Action Detection. In: Gade, R., Felsberg, M., Kämäräinen, JK. (eds) Image Analysis. SCIA 2023. Lecture Notes in Computer Science, vol 13885. Springer, Cham. https://doi.org/10.1007/978-3-031-31435-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31435-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31434-6

  • Online ISBN: 978-3-031-31435-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics