[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Raven: Benchmarking Monetary Expense and Query Efficiency of OLAP Engines on the Cloud

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13946))

Included in the following conference series:

  • 2172 Accesses

Abstract

Nowadays, it is prevalent to build OLAP services on cloud platforms. Cloud OLAP adopters are eager to understand and characterize the performance of OLAP engines on the cloud. However, traditional OLAP benchmarks are usually designed for on-premise environments. When evaluating cloud OLAP engines, they have limitations on cloud environment adaption and cloud scenario benchmark execution. To address these issues, this paper proposes Raven, a cloud-oriented OLAP benchmark with flexible system architecture and diversified workloads. Raven supports cloud service deployment and various cloud OLAP engine integration. In addition, to simulate complex cloud query scenarios, we design a group of timeline-based and service-oriented workloads. We implement Raven on the Amazon AWS cloud platform and use it to evaluate typical types of widely-used OLAP engines, including Presto, SparkSQL, Kylin, and Athena. Experimental results show that Raven can effectively benchmark diversified OLAP engines. Besides, Raven can benchmark various configuration settings of an identical OLAP engine. We also explore an OLAP case study on the cloud using Raven.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armbrust, M., et al.: Spark SQL: relational data processing in Spark. In: SIGMOD Conference, pp. 1383–1394 (2015)

    Google Scholar 

  2. Battle, L., et al.: Database benchmarking for supporting real-time interactive querying of large data. In: SIGMOD Conference, pp. 1571–1587 (2020)

    Google Scholar 

  3. Chevalier, M., et al.: Benchmark for OLAP on nosql technologies comparing nosql multidimensional data warehousing solutions. In: RCIS, pp. 480–485 (2015)

    Google Scholar 

  4. Cooper, B.F., et al.: Benchmarking cloud serving systems with YCSB. In: SoCC, pp. 143–154 (2010)

    Google Scholar 

  5. Daase, B., et al.: Maximizing persistent memory bandwidth utilization for OLAP workloads. In: SIGMOD Conference, pp. 339–351 (2021)

    Google Scholar 

  6. Dageville, B., et al.: The snowflake elastic data warehouse. In: SIGMOD Conference, pp. 215–226 (2016)

    Google Scholar 

  7. Deep, S., et al.: DIAMetrics: benchmarking query engines at scale. SIGMOD Rec. 50(1), 24–31 (2021)

    Article  Google Scholar 

  8. Gruenheid, A., et al.: DIAMetrics: benchmarking query engines at scale. Proc. VLDB Endow. 13(12), 3285–3298 (2020)

    Article  Google Scholar 

  9. Gu, R., et al.: Improving in-memory file system reading performance by fine-grained user-space cache mechanisms. J. Syst. Archit. 1(115), 1–15 (2021)

    Google Scholar 

  10. Gu, R., et al.: Octopus-DF: unified dataframe-based cross-platform data analytic system. Parallel Comput. 110(2022), 1–12 (2022)

    MathSciNet  Google Scholar 

  11. Kornacker, M., et al.: Impala: a modern, open-source SQL engine for hadoop. In: CIDR, pp. 1–10 (2015)

    Google Scholar 

  12. Kossmann, D., et al.: An evaluation of alternative architectures for transaction processing in the cloud. In: SIGMOD Conference, pp. 579–590 (2010)

    Google Scholar 

  13. Kuschewski, M., Leis, V.: White-box OLAP performance modeling for the cloud. In: CIDR, p. 1 (2021)

    Google Scholar 

  14. Lamb, A., et al.: The vertica analytic database: C-store 7 years later. Proc. VLDB Endow. 5(12), 1790–1801 (2012)

    Article  Google Scholar 

  15. Laszewski, T., Nauduri, P.: Chapter 1 - Migrating to the cloud. In: Migrating to the Cloud: Oracle Client/Server Modernization, pp. 1–19. Syngress, Boston (2012)

    Google Scholar 

  16. Li, C., et al.: The design and implementation of a scalable deep learning benchmarking platform. In: CLOUD, pp. 414–425 (2020)

    Google Scholar 

  17. Malki, M.E., et al.: Benchmarking big data OLAP nosql databases. In: UNet, pp. 82–94 (2018)

    Google Scholar 

  18. O’Neil, P.E., et al.: The star schema benchmark and augmented fact table indexing. In: TPCTC, pp. 237–252 (2009)

    Google Scholar 

  19. Pöss, M., et al.: TPC-DS, taking decision support benchmarking to the next level. In: SIGMOD Conference, pp. 582–587 (2002)

    Google Scholar 

  20. Queiroz-Sousa, P.O., Salgado, A.C.: A review on OLAP technologies applied to information networks. ACM Trans. Knowl. Discov. Data 14(1), 8:1–8:25 (2020)

    Google Scholar 

  21. Sethi, R., et al.: Presto: SQL on everything. In: ICDE, pp. 1802–1813 (2019)

    Google Scholar 

  22. Steinmetz, N., et al.: Question answering on OLAP-like data sources. In: EDBT/ICDT Workshops, pp. 1–8 (2020)

    Google Scholar 

  23. Tan, J., et al.: Choosing a cloud DBMS: architectures and tradeoffs. Proc. VLDB Endow. 12(12), 2170–2182 (2019)

    Article  Google Scholar 

  24. The Apache Software Foundation: Apache Kylin | Analytical Data Warehouse for Big Data. http://kylin.apache.org/

  25. Thusoo, A., et al.: Hive - a petabyte scale data warehouse using hadoop. In: ICDE, pp. 996–1005 (2010)

    Google Scholar 

  26. Transaction processing performance council: TPC-H homepage. http://www.tpc.org/tpch/

  27. Varghese, B., et al.: Cloud benchmarking for performance. In: CloudCom, pp. 535–540 (2014)

    Google Scholar 

  28. Varghese, B., et al.: Container-based cloud virtual machine benchmarking. In: IC2E, pp. 192–201 (2016)

    Google Scholar 

  29. Wang, L., et al.: BigDataBench: a big data benchmark suite from internet services. In: HPCA, pp. 488–499 (2014)

    Google Scholar 

  30. Wu, Z., Li, K.: Vbtree: forward secure conjunctive queries over encrypted data for cloud computing. VLDB J. 28(1), 25–46 (2019)

    Article  Google Scholar 

  31. Xie, R., et al.: Hash adaptive bloom filter. In: IEEE ICDE Conference, pp. 636–647 (2021)

    Google Scholar 

  32. Xie, X., et al.: OLAP over probabilistic data cubes II: parallel materialization and extended aggregates. IEEE Trans. Knowl. Data Eng. 32(10), 1966–1981 (2020)

    Article  Google Scholar 

  33. Yang, F., et al.: Druid: a real-time analytical data store. In: SIGMOD Conference, pp. 157–168 (2014)

    Google Scholar 

  34. Zhan, C., et al.: AnalyticDB: real-time OLAP database system at Alibaba cloud. Proc. VLDB Endow. 12(12), 2059–2070 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded in part by the China National Science Foundation (No. 62072230, U1811461), the Fundamental Research Funds for the Central Universities (No. 020214380089, 020214380098), Jiangsu Province Science and Technology Key Program (No. BE2021729), and the Collaborative Innovation Center of Novel Software Technology and Industrialization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Gu or Yihua Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, T. et al. (2023). Raven: Benchmarking Monetary Expense and Query Efficiency of OLAP Engines on the Cloud. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13946. Springer, Cham. https://doi.org/10.1007/978-3-031-30678-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30678-5_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30677-8

  • Online ISBN: 978-3-031-30678-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics