Abstract
With the increasing number of cloud services in multi-cloud, it has been a challenging task to choose suitable cloud services in consideration of multiple conflicting objectives. Multi-objective location-aware service brokering in multi-cloud aims to find a set of trade-off solutions that minimize both the cost and latency. To achieve this goal, existing approaches either manually design brokering heuristics or automatically generate heuristics via Genetic Programming Hyper-Heuristics (GPHH) for each problem domain from scratch. However, manually designing heuristics takes a long time and requires domain knowledge. Also, knowledge learnt from one problem domain can be helpful for solving another problem domain. To effectively and efficiently generate heuristics for any new problem domain, we propose three novel GPHH-based approaches with transfer learning to automatically generate a group of Pareto-optimal heuristics. Experimental evaluations on real-world datasets demonstrate that our proposed GPHH with transfer learning approaches can outperform existing approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ardeh, M.A., Mei, Y., Zhang, M.: Genetic programming with knowledge transfer and guided search for uncertain capacitated arc routing problem. IEEE Trans. Evol. Comput. 26(4), 765–779 (2021)
Ardeh, M.A., Mei, Y., Zhangz, M.: Diversity-driven knowledge transfer for GPHH to solve uncertain capacitated arc routing problem. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2407–2414. IEEE (2020)
Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)
Chen, Y., Shi, T., Ma, H., Chen, G.: Automatically design heuristics for multi-objective location-aware service brokering in multi-cloud. In: 2022 IEEE International Conference on Services Computing (SCC), pp. 206–214. IEEE (2022)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Dinh, T.T.H., Chu, T.H., Nguyen, Q.U.: Transfer learning in genetic programming. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 1145–1151. IEEE (2015)
Du, B., Wu, C., Huang, Z.: Learning resource allocation and pricing for cloud profit maximization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 7570–7577 (2019)
Durillo, J.J., Fard, H.M., Prodan, R.: Moheft: A multi-objective list-based method for workflow scheduling. In: 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, pp. 185–192. IEEE (2012)
Escott, K.-R., Ma, H., Chen, G.: Transfer learning assisted GPHH for dynamic multi-workflow scheduling in cloud computing. In: Long, G., Yu, X., Wang, S. (eds.) AI 2022. LNCS (LNAI), vol. 13151, pp. 440–451. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97546-3_36
Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: 2006 IEEE international conference on evolutionary computation, pp. 1157–1163. IEEE (2006)
Fortin, F.A., De Rainville, F.M., Gardner, M.A.G., Parizeau, M., Gagné, C.: Deap: Evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175 (2012)
Heilig, L., Buyya, R., Voß, S.: Location-aware brokering for consumers in multi-cloud computing environments. J. Netw. Comput. Appl. 95, 79–93 (2017)
Iqbal, M., Xue, B., Al-Sahaf, H., Zhang, M.: Cross-domain reuse of extracted knowledge in genetic programming for image classification. IEEE Trans. Evol. Comput. 21(4), 569–587 (2017)
Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_8
Koçer, B., Arslan, A.: Genetic transfer learning. Expert Syst. Appl. 37(10), 6997–7002 (2010)
Koza, J.R., Poli, R.: Genetic programming. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies, pp. 127–164. Springer, Boston (2005). https://doi.org/10.1007/0-387-28356-0_5
Ma, H., da Silva, A.S., Kuang, W.: NSGA-II with local search for multi-objective application deployment in multi-cloud. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 2800–2807. IEEE (2019)
Mansouri, Y., Toosi, A.N., Buyya, R.: Brokering algorithms for optimizing the availability and cost of cloud storage services. In: 2013 IEEE 5th International Conference on Cloud Computing Technology and Science, vol. 1, pp. 581–589 (2013)
Shi, T., Ma, H., Chen, G.: A genetic-based approach to location-aware cloud service brokering in multi-cloud environment. In: 2019 IEEE International Conference on Services Computing (SCC), pp. 146–153. IEEE (2019)
Shi, T., Ma, H., Chen, G.: Seeding-based multi-objective evolutionary algorithms for multi-cloud composite applications deployment. In: 2020 IEEE International Conference on Services Computing (SCC), pp. 240–247. IEEE (2020)
Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-constrained application replication and deployment in multi-cloud environment. In: 2020 IEEE International Conference on Web Services (ICWS), pp. 110–117. IEEE (2020)
Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-constrained service deployment for composite applications in multi-cloud environment. IEEE Trans. Parallel Distrib. Syst. 31(8), 1954–1969 (2020)
Shi, T., Ma, H., Chen, G., Hartmann, S.: Cost-effective web application replication and deployment in multi-cloud environment. IEEE Trans. Parallel Distrib. Syst. 33(8), 1982–1995 (2021)
Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-constrained service brokering in multi-cloud via deep reinforcement learning. In: Hacid, H., Kao, O., Mecella, M., Moha, N., Paik, H. (eds.) ICSOC 2021. LNCS, vol. 13121, pp. 756–764. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91431-8_52
Simarro, J.L.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Dynamic placement of virtual machines for cost optimization in multi-cloud environments. In: International Conference on High Performance Computing Simulation, pp. 1–7 (2011)
Tan, B., Ma, H., Mei, Y.: A hybrid genetic programming hyper-heuristic approach for online two-level resource allocation in container-based clouds. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 2681–2688. IEEE (2019)
Weiss, K., Khoshgoftaar, T.M., Wang, D.D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6
While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–38 (2006)
Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Evolving scheduling heuristics via genetic programming with feature selection in dynamic flexible job-shop scheduling. IEEE Trans. Cybern. 51(4), 1797–1811 (2020)
Zhang, F., Mei, Y., Nguyen, S., Zhang, M., Tan, K.C.: Surrogate-assisted evolutionary multitask genetic programming for dynamic flexible job shop scheduling. IEEE Trans. Evol. Comput. 25(4), 651–665 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, Y., Shi, T., Ma, H., Chen, G. (2023). Multi-objective Location-Aware Service Brokering in Multi-cloud - A GPHH Approach with Transfer Learning. In: Correia, J., Smith, S., Qaddoura, R. (eds) Applications of Evolutionary Computation. EvoApplications 2023. Lecture Notes in Computer Science, vol 13989. Springer, Cham. https://doi.org/10.1007/978-3-031-30229-9_37
Download citation
DOI: https://doi.org/10.1007/978-3-031-30229-9_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30228-2
Online ISBN: 978-3-031-30229-9
eBook Packages: Computer ScienceComputer Science (R0)