[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-objective Location-Aware Service Brokering in Multi-cloud - A GPHH Approach with Transfer Learning

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2023)

Abstract

With the increasing number of cloud services in multi-cloud, it has been a challenging task to choose suitable cloud services in consideration of multiple conflicting objectives. Multi-objective location-aware service brokering in multi-cloud aims to find a set of trade-off solutions that minimize both the cost and latency. To achieve this goal, existing approaches either manually design brokering heuristics or automatically generate heuristics via Genetic Programming Hyper-Heuristics (GPHH) for each problem domain from scratch. However, manually designing heuristics takes a long time and requires domain knowledge. Also, knowledge learnt from one problem domain can be helpful for solving another problem domain. To effectively and efficiently generate heuristics for any new problem domain, we propose three novel GPHH-based approaches with transfer learning to automatically generate a group of Pareto-optimal heuristics. Experimental evaluations on real-world datasets demonstrate that our proposed GPHH with transfer learning approaches can outperform existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.sprint.net.

  2. 2.

    https://www.sprint.net/tools/ip-network-performance.

References

  1. Ardeh, M.A., Mei, Y., Zhang, M.: Genetic programming with knowledge transfer and guided search for uncertain capacitated arc routing problem. IEEE Trans. Evol. Comput. 26(4), 765–779 (2021)

    Article  Google Scholar 

  2. Ardeh, M.A., Mei, Y., Zhangz, M.: Diversity-driven knowledge transfer for GPHH to solve uncertain capacitated arc routing problem. In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2407–2414. IEEE (2020)

    Google Scholar 

  3. Burke, E.K., et al.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)

    Article  Google Scholar 

  4. Chen, Y., Shi, T., Ma, H., Chen, G.: Automatically design heuristics for multi-objective location-aware service brokering in multi-cloud. In: 2022 IEEE International Conference on Services Computing (SCC), pp. 206–214. IEEE (2022)

    Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Dinh, T.T.H., Chu, T.H., Nguyen, Q.U.: Transfer learning in genetic programming. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 1145–1151. IEEE (2015)

    Google Scholar 

  7. Du, B., Wu, C., Huang, Z.: Learning resource allocation and pricing for cloud profit maximization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 7570–7577 (2019)

    Google Scholar 

  8. Durillo, J.J., Fard, H.M., Prodan, R.: Moheft: A multi-objective list-based method for workflow scheduling. In: 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, pp. 185–192. IEEE (2012)

    Google Scholar 

  9. Escott, K.-R., Ma, H., Chen, G.: Transfer learning assisted GPHH for dynamic multi-workflow scheduling in cloud computing. In: Long, G., Yu, X., Wang, S. (eds.) AI 2022. LNCS (LNAI), vol. 13151, pp. 440–451. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97546-3_36

    Chapter  Google Scholar 

  10. Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: 2006 IEEE international conference on evolutionary computation, pp. 1157–1163. IEEE (2006)

    Google Scholar 

  11. Fortin, F.A., De Rainville, F.M., Gardner, M.A.G., Parizeau, M., Gagné, C.: Deap: Evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175 (2012)

    MathSciNet  Google Scholar 

  12. Heilig, L., Buyya, R., Voß, S.: Location-aware brokering for consumers in multi-cloud computing environments. J. Netw. Comput. Appl. 95, 79–93 (2017)

    Article  Google Scholar 

  13. Iqbal, M., Xue, B., Al-Sahaf, H., Zhang, M.: Cross-domain reuse of extracted knowledge in genetic programming for image classification. IEEE Trans. Evol. Comput. 21(4), 569–587 (2017)

    Article  Google Scholar 

  14. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_8

    Chapter  Google Scholar 

  15. Koçer, B., Arslan, A.: Genetic transfer learning. Expert Syst. Appl. 37(10), 6997–7002 (2010)

    Article  Google Scholar 

  16. Koza, J.R., Poli, R.: Genetic programming. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies, pp. 127–164. Springer, Boston (2005). https://doi.org/10.1007/0-387-28356-0_5

  17. Ma, H., da Silva, A.S., Kuang, W.: NSGA-II with local search for multi-objective application deployment in multi-cloud. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 2800–2807. IEEE (2019)

    Google Scholar 

  18. Mansouri, Y., Toosi, A.N., Buyya, R.: Brokering algorithms for optimizing the availability and cost of cloud storage services. In: 2013 IEEE 5th International Conference on Cloud Computing Technology and Science, vol. 1, pp. 581–589 (2013)

    Google Scholar 

  19. Shi, T., Ma, H., Chen, G.: A genetic-based approach to location-aware cloud service brokering in multi-cloud environment. In: 2019 IEEE International Conference on Services Computing (SCC), pp. 146–153. IEEE (2019)

    Google Scholar 

  20. Shi, T., Ma, H., Chen, G.: Seeding-based multi-objective evolutionary algorithms for multi-cloud composite applications deployment. In: 2020 IEEE International Conference on Services Computing (SCC), pp. 240–247. IEEE (2020)

    Google Scholar 

  21. Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-constrained application replication and deployment in multi-cloud environment. In: 2020 IEEE International Conference on Web Services (ICWS), pp. 110–117. IEEE (2020)

    Google Scholar 

  22. Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-constrained service deployment for composite applications in multi-cloud environment. IEEE Trans. Parallel Distrib. Syst. 31(8), 1954–1969 (2020)

    Article  Google Scholar 

  23. Shi, T., Ma, H., Chen, G., Hartmann, S.: Cost-effective web application replication and deployment in multi-cloud environment. IEEE Trans. Parallel Distrib. Syst. 33(8), 1982–1995 (2021)

    Article  Google Scholar 

  24. Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-constrained service brokering in multi-cloud via deep reinforcement learning. In: Hacid, H., Kao, O., Mecella, M., Moha, N., Paik, H. (eds.) ICSOC 2021. LNCS, vol. 13121, pp. 756–764. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91431-8_52

    Chapter  Google Scholar 

  25. Simarro, J.L.L., Moreno-Vozmediano, R., Montero, R.S., Llorente, I.M.: Dynamic placement of virtual machines for cost optimization in multi-cloud environments. In: International Conference on High Performance Computing Simulation, pp. 1–7 (2011)

    Google Scholar 

  26. Tan, B., Ma, H., Mei, Y.: A hybrid genetic programming hyper-heuristic approach for online two-level resource allocation in container-based clouds. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 2681–2688. IEEE (2019)

    Google Scholar 

  27. Weiss, K., Khoshgoftaar, T.M., Wang, D.D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  28. While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–38 (2006)

    Article  Google Scholar 

  29. Zhang, F., Mei, Y., Nguyen, S., Zhang, M.: Evolving scheduling heuristics via genetic programming with feature selection in dynamic flexible job-shop scheduling. IEEE Trans. Cybern. 51(4), 1797–1811 (2020)

    Google Scholar 

  30. Zhang, F., Mei, Y., Nguyen, S., Zhang, M., Tan, K.C.: Surrogate-assisted evolutionary multitask genetic programming for dynamic flexible job shop scheduling. IEEE Trans. Evol. Comput. 25(4), 651–665 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Shi, T., Ma, H., Chen, G. (2023). Multi-objective Location-Aware Service Brokering in Multi-cloud - A GPHH Approach with Transfer Learning. In: Correia, J., Smith, S., Qaddoura, R. (eds) Applications of Evolutionary Computation. EvoApplications 2023. Lecture Notes in Computer Science, vol 13989. Springer, Cham. https://doi.org/10.1007/978-3-031-30229-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30229-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30228-2

  • Online ISBN: 978-3-031-30229-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics