Abstract
We study the \((1:s+1)\) success rule for controlling the population size of the \((1,\lambda )\)-EA. It was shown by Hevia Fajardo and Sudholt that this parameter control mechanism can run into problems for large s if the fitness landscape is too easy. They conjectured that this problem is worst for the OneMax benchmark, since in some well-established sense OneMax is known to be the easiest fitness landscape.
In this paper we disprove this conjecture. We show that there exist s and \(\varepsilon \) such that the self-adjusting \((1,\lambda )\)-EA with the \((1:s+1)\)-rule optimizes OneMax efficiently when started with \(\varepsilon n\) zero-bits, but does not find the optimum in polynomial time on Dynamic BinVal. Hence, we show that there are landscapes where the problem of the \((1:s+1)\)-rule for controlling the population size of the \((1 , \lambda )\)-EA is more severe than for OneMax. The key insight is that, while OneMax is the easiest function for decreasing the distance to the optimum, it is not the easiest fitness landscape with respect to finding fitness-improving steps.
M. Kaufmann—The author was supported by the Swiss National Science Foundation [grant number 200021_192079].
X. Zou—The author was supported by the Swiss National Science Foundation [grant number CR-SII5_173721].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Traditionally the most popular value is \(s=4\), leading to the famous one-fifth rule [2].
- 2.
Empirically they found the threshold between the two regimes to be around \(s\approx 3.4\).
- 3.
See [23, Section 2.1] for a detailed discussion of the target population size \(\lambda ^*\).
- 4.
A function \(f:\{0,1\}^n \rightarrow \mathbb {R}\) is monotone if flipping a zero-bit into a one-bit always improves the fitness. In the dynamic monotone setting, selection may be based on a different function in each generation, but it must always be a monotone function. The formal definition is not relevant for this paper, but can be found in [23].
- 5.
In Lemma 7 () and Lemma 13 we consider a constant \(\varepsilon >0\), introduce an \(\varepsilon ' = \varepsilon '(\varepsilon )\) and look at all states in the range \((\varepsilon \pm \varepsilon ')n\). Again, we implicitly assume that \((\varepsilon - \varepsilon ')n\) and \((\varepsilon + \varepsilon ')n\) are integers, since we use those in the calculations.
- 6.
The subscript indicates dependency on \(\lambda \), i.e., for all \(c,C >0\) there exists \(\lambda _0\) such that for all \(\lambda \ge \lambda _0\) we have \(\tilde{\varepsilon }(\lambda ) \le c/\lambda \) and \(\tilde{s}(\lambda ) \ge C\).
- 7.
Defined as \(\textsc {BinVal} (x) = \sum _{i=1}^{n} 2^{i-1} x_i \) and \(\textsc {Binary} (x) = \sum _{i=1}^{\lfloor n/2 \rfloor } x_i n + \sum _{i=\lfloor n/2 \rfloor + 1}^n x_i\).
- 8.
We note that there are other types of “easiness”, e.g. with respect to a fixed budget.
References
Antipov, D., Doerr, B., Yang, Q.: The efficiency threshold for the offspring population size of the \((\mu , \lambda )\) EA. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1461–1469 (2019)
Auger, A.: Benchmarking the (1+ 1) evolution strategy with one-fifth success rule on the BBOB-2009 function testbed. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 2447–2452 (2009)
Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of parallel search. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 892–901. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_88
Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes problem. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 1–10. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_1
Colin, S., Doerr, B., Férey, G.: Monotonic functions in EC: anything but monotone! In: Genetic and Evolutionary Computation Conference (GECCO), pp. 753–760 (2014)
Corus, D., He, J., Jansen, T., Oliveto, P.S., Sudholt, D., Zarges, C.: On easiest functions for mutation operators in bio-inspired optimisation. Algorithmica 78(2), 714–740 (2017)
Devroye, L.: The compound random search. Ph.D. dissertation, Purdue Univ., West Lafayette, IN (1972)
Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics. In: Theory of Evolutionary Computation. NCS, pp. 1–87. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_1
Doerr, B., Doerr, C.: Theory of parameter control for discrete black-box optimization: provable performance gains through dynamic parameter choices. In: Theory of Evolutionary Computation. NCS, pp. 271–321. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_6
Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic algorithms. Theor. Comput. Sci. 567, 87–104 (2015)
Doerr, B., Doerr, C., Lengler, J.: Self-adjusting mutation rates with provably optimal success rules. Algorithmica 83(10), 3108–3147 (2021)
Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box analysis. Theor. Comput. Sci. 801, 1–34 (2020)
Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–697 (2012)
Doerr, B., Witt, C., Yang, J.: Runtime analysis for self-adaptive mutation rates. Algorithmica 83(4), 1012–1053 (2021)
Doerr, C., Wagner, M.: Simple on-the-fly parameter selection mechanisms for two classical discrete black-box optimization benchmark problems. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 943–950 (2018)
Droste, S.: A rigorous analysis of the compact genetic algorithm for linear functions. Nat. Comput. 5(3), 257–283 (2006)
Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3, 124–141 (1999)
He, J., Chen, T., Yao, X.: On the easiest and hardest fitness functions. IEEE Trans. Evol. Comput. 19(2), 295–305 (2014)
Hevia Fajardo, M.A., Sudholt, D.: Self-adjusting population sizes for non-elitist evolutionary algorithms: why success rates matter. arXiv preprint arXiv:2104.05624 (2021)
Hevia Fajardo, M.A., Sudholt, D.: Self-adjusting population sizes for non-elitist evolutionary algorithms: why success rates matter. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1151–1159 (2021)
Jansen, T.: On the brittleness of evolutionary algorithms. In: Stephens, C.R., Toussaint, M., Whitley, D., Stadler, P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp. 54–69. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73482-6_4
Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: Onemax is not the easiest function for fitness improvements. arXiv preprint arXiv:2204.07017 (2022)
Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: Self-adjusting population sizes for the \((1, \lambda )\)-EA on monotone functions (2022). https://arxiv.org/abs/2204.00531
Kaufmann, M., Larcher, M., Lengler, J., Zou, X.: Self-adjusting population sizes for the \((1, \lambda )\)-EA on monotone functions. In: Rudolph, G., Kononova, A.V., Aguirre, H., Kerschke, P., Ochoa, G., Tusar, T. (eds.) Parallel Problem Solving from Nature (PPSN) XVII. PPSN 2022. Lecture Notes in Computer Science, vol. 13399, pp. 569–585. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14721-0_40
Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.: Learning probability distributions in continuous evolutionary algorithms-a comparative review. Nat. Comput. 3(1), 77–112 (2004)
Kötzing, T.: Concentration of first hitting times under additive drift. Algorithmica 75(3), 490–506 (2016)
Lehre, P., Qin, X.: More precise runtime analyses of non-elitist evolutionary algorithms in uncertain environments. Algorithmica 1–46 (2022). https://doi.org/10.1007/s00453-022-01044-5
Lengler, J.: A general dichotomy of evolutionary algorithms on monotone functions. IEEE Trans. Evol. Comput. 24(6), 995–1009 (2019)
Lengler, J.: Drift analysis. In: Theory of Evolutionary Computation. NCS, pp. 89–131. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29414-4_2
Lengler, J., Meier, J.: Large population sizes and crossover help in dynamic environments. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12269, pp. 610–622. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58112-1_42
Lengler, J., Riedi, S.: Runtime analysis of the \((\mu + 1)\)-EA on the dynamic BinVal function. In: Zarges, C., Verel, S. (eds.) EvoCOP 2021. LNCS, vol. 12692, pp. 84–99. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72904-2_6
Lengler, J., Schaller, U.: The \((1+1)\)-EA on noisy linear functions with random positive weights. In: Symposium Series on Computational Intelligence (SSCI), pp. 712–719. IEEE (2018)
Oliveto, P., Witt, C.: On the analysis of the simple genetic algorithm. Theor. Comput. Sci. 545, 2–19 (2014)
Rechenberg, I.: Evolutionsstrategien. In: Schneider, B., Ranft, U. (eds.) Simulationsmethoden in der Medizin und Biologie. Medizinische Informatik und Statistik, vol. 8, pp. 83–114. Springer, Berlin (1978). https://doi.org/10.1007/978-3-642-81283-5_8
Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, \(\lambda \)) evolutionary algorithm. Theor. Comput. Sci. 545, 20–38 (2014)
Schumer, M., Steiglitz, K.: Adaptive step size random search. IEEE Trans. Autom. Control 13(3), 270–276 (1968)
Sudholt, D.: A new method for lower bounds on the running time of evolutionary algorithms. IEEE Trans. Evol. Comput. 17(3), 418–435 (2012)
Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions. Comb. Probab. Comput. 22(2), 294–318 (2013)
Acknowledgements
We thank Dirk Sudholt for helpful discussions during the Dagstuhl seminar 22081 “Theory of Randomized Optimization Heuristics” and Mario Hevia Fajardo for sharing his simulation code for comparison.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kaufmann, M., Larcher, M., Lengler, J., Zou, X. (2023). OneMax Is Not the Easiest Function for Fitness Improvements. In: Pérez Cáceres, L., Stützle, T. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2023. Lecture Notes in Computer Science, vol 13987. Springer, Cham. https://doi.org/10.1007/978-3-031-30035-6_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-30035-6_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-30034-9
Online ISBN: 978-3-031-30035-6
eBook Packages: Computer ScienceComputer Science (R0)