Abstract
In this work we present DRUM, an unsupervised approach that is based on statistical properties of multivariate data streams to identify regime shifts in real time. DRUM processes streams in small chunks, learns their statistical properties, and makes generalizations as time goes by. We show how this straightforward approach requires minimal computation and reaches state of the art accuracy, making it ideal for embedded and cyber physical systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Adams, R.P., MacKay, D.J.C.: Bayesian Online Changepoint Detection (2007). http://arxiv.org/abs/0710.3742
Adiga, S., Tandon, R.: Unsupervised change detection using dre-cusum. arXiv preprint arXiv:2201.11678 (2022)
Ahamed, R., Lavin, A., Purdy, S., Agha, Z.: Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262, 134–147 (2017). https://doi.org/10.1016/j.neucom.2017.04.070
Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point detection. Knowl. Inf. Syst. 51(2), 339–367 (2016). https://doi.org/10.1007/s10115-016-0987-z
Aminikhanghahi, S., Wang, T., Cook, D.J.: Real-time change point detection with application to smart home time series data. IEEE Trans. Knowl. Data Eng. 31(5), 1010–1023 (2019). https://doi.org/10.1109/TKDE.2018.2850347
Athey, S., Tibshirani, J., Wager, S.: Generalized random forests (2019)
van den Burg, G.J., Williams, C.K.: An evaluation of change point detection algorithms. arXiv, pp. 1–33 (2020)
Camci, F.: Change point detection in time series data using support vectors. Int. J. Pattern Recognit. Artif. Intell. 24(01), 73–95 (2010)
Fearnhead, P., Rigaill, G.: Changepoint detection in the presence of outliers. J. Am. Stat. Assoc. 114(525), 169–183 (2019)
Fryzlewicz, P.: Wild binary segmentation for multiple change-point detection. Ann. Stat. 42(6), 2243–2281 (2014)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Katser, I., Kozitsin, V., Lobachev, V., Maksimov, I.: Unsupervised offline changepoint detection ensembles. Appl. Sci. 11(9), 1–19 (2021). https://doi.org/10.3390/app11094280
Katser, I.D., Kozitsin, V.O.: Skoltech anomaly benchmark (SKAB) (2020). https://www.kaggle.com/dsv/1693952. https://doi.org/10.34740/KAGGLE/DSV/1693952
Killick, R., Fearnhead, P., Eckley, I.A.: Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107(500), 1590–1598 (2012)
Knoblauch, J., Damoulas, T.: Spatio-temporal Bayesian on-line changepoint detection with model selection. In: International Conference on Machine Learning, pp. 2718–2727. PMLR (2018)
Knoblauch, J., Jewson, J.E., Damoulas, T.: Doubly robust Bayesian inference for non-stationary streaming data with divergences. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Lavin, A., Subutai, A.: Numenta anomaly benchmark. In: International Conference on Machine Learning and Applications, vol. 14 (2015)
Li, D., Chen, D., Shi, L., Jin, B., Goh, J., Ng, S.K.: MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks. arXiv, vol. 1, pp. 703–716 (2019)
Liu, Y.W., Chen, H.: A fast and efficient change-point detection framework based on approximate \( k \)-nearest neighbor graphs. arXiv preprint arXiv:2006.13450 (2020)
Miller, D.J., Ghalyan, N.F., Mondal, S., Ray, A.: Hmm conditional-likelihood based change detection with strict delay tolerance. Mech. Syst. Signal Process. 147, 107109 (2021)
Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)
Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile phones to determine transportation modes. ACM Trans. Sen. Netw. 6(2) (2010). https://doi.org/10.1145/1689239.1689243
Reeves, J., Chen, J., Wang, X.L., Lund, R., Lu, Q.Q.: A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Climatol. 46(6), 900–915 (2007)
Schäfer, P., Ermshaus, A., Leser, U.: ClaSP - time series segmentation. In: CIKM (2021)
Taylor, S.J., Letham, B.: Business time series forecasting at scale. PeerJ Preprints 5:e3190v2 35(8), 48–90 (2017)
Tran, D.H.: Automated change detection and reactive clustering in multivariate streaming data. In: 2019 IEEE-RIVF International Conference on Computing and Communication Technologies (RIVF), pp. 1–6. IEEE (2019)
Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 14(1), 35–62 (1998). https://doi.org/10.1016/S0169-2070(97)00044-7
Acknowledgments
This work was supported by National Science Foundation (NSF) EPSCoR grant number OIA-1757207.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bashir, A., Estrada, T. (2023). DRUM: A Real Time Detector for Regime Shifts in Data Streams via an Unsupervised, Multivariate Framework. In: Wrembel, R., Gamper, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2023. Lecture Notes in Computer Science, vol 14148. Springer, Cham. https://doi.org/10.1007/978-3-031-39831-5_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-39831-5_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-39830-8
Online ISBN: 978-3-031-39831-5
eBook Packages: Computer ScienceComputer Science (R0)