[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

DRUM: A Real Time Detector for Regime Shifts in Data Streams via an Unsupervised, Multivariate Framework

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2023)

Abstract

In this work we present DRUM, an unsupervised approach that is based on statistical properties of multivariate data streams to identify regime shifts in real time. DRUM processes streams in small chunks, learns their statistical properties, and makes generalizations as time goes by. We show how this straightforward approach requires minimal computation and reaches state of the art accuracy, making it ideal for embedded and cyber physical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 47.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://numenta.com/.

References

  1. Adams, R.P., MacKay, D.J.C.: Bayesian Online Changepoint Detection (2007). http://arxiv.org/abs/0710.3742

  2. Adiga, S., Tandon, R.: Unsupervised change detection using dre-cusum. arXiv preprint arXiv:2201.11678 (2022)

  3. Ahamed, R., Lavin, A., Purdy, S., Agha, Z.: Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262, 134–147 (2017). https://doi.org/10.1016/j.neucom.2017.04.070

    Article  Google Scholar 

  4. Aminikhanghahi, S., Cook, D.J.: A survey of methods for time series change point detection. Knowl. Inf. Syst. 51(2), 339–367 (2016). https://doi.org/10.1007/s10115-016-0987-z

    Article  Google Scholar 

  5. Aminikhanghahi, S., Wang, T., Cook, D.J.: Real-time change point detection with application to smart home time series data. IEEE Trans. Knowl. Data Eng. 31(5), 1010–1023 (2019). https://doi.org/10.1109/TKDE.2018.2850347

    Article  Google Scholar 

  6. Athey, S., Tibshirani, J., Wager, S.: Generalized random forests (2019)

    Google Scholar 

  7. van den Burg, G.J., Williams, C.K.: An evaluation of change point detection algorithms. arXiv, pp. 1–33 (2020)

    Google Scholar 

  8. Camci, F.: Change point detection in time series data using support vectors. Int. J. Pattern Recognit. Artif. Intell. 24(01), 73–95 (2010)

    Article  Google Scholar 

  9. Fearnhead, P., Rigaill, G.: Changepoint detection in the presence of outliers. J. Am. Stat. Assoc. 114(525), 169–183 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fryzlewicz, P.: Wild binary segmentation for multiple change-point detection. Ann. Stat. 42(6), 2243–2281 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  12. Katser, I., Kozitsin, V., Lobachev, V., Maksimov, I.: Unsupervised offline changepoint detection ensembles. Appl. Sci. 11(9), 1–19 (2021). https://doi.org/10.3390/app11094280

    Article  Google Scholar 

  13. Katser, I.D., Kozitsin, V.O.: Skoltech anomaly benchmark (SKAB) (2020). https://www.kaggle.com/dsv/1693952. https://doi.org/10.34740/KAGGLE/DSV/1693952

  14. Killick, R., Fearnhead, P., Eckley, I.A.: Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc. 107(500), 1590–1598 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Knoblauch, J., Damoulas, T.: Spatio-temporal Bayesian on-line changepoint detection with model selection. In: International Conference on Machine Learning, pp. 2718–2727. PMLR (2018)

    Google Scholar 

  16. Knoblauch, J., Jewson, J.E., Damoulas, T.: Doubly robust Bayesian inference for non-stationary streaming data with divergences. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  17. Lavin, A., Subutai, A.: Numenta anomaly benchmark. In: International Conference on Machine Learning and Applications, vol. 14 (2015)

    Google Scholar 

  18. Li, D., Chen, D., Shi, L., Jin, B., Goh, J., Ng, S.K.: MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks. arXiv, vol. 1, pp. 703–716 (2019)

    Google Scholar 

  19. Liu, Y.W., Chen, H.: A fast and efficient change-point detection framework based on approximate \( k \)-nearest neighbor graphs. arXiv preprint arXiv:2006.13450 (2020)

  20. Miller, D.J., Ghalyan, N.F., Mondal, S., Ray, A.: Hmm conditional-likelihood based change detection with strict delay tolerance. Mech. Syst. Signal Process. 147, 107109 (2021)

    Article  Google Scholar 

  21. Page, E.S.: Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  22. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., Srivastava, M.: Using mobile phones to determine transportation modes. ACM Trans. Sen. Netw. 6(2) (2010). https://doi.org/10.1145/1689239.1689243

  23. Reeves, J., Chen, J., Wang, X.L., Lund, R., Lu, Q.Q.: A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Climatol. 46(6), 900–915 (2007)

    Article  Google Scholar 

  24. Schäfer, P., Ermshaus, A., Leser, U.: ClaSP - time series segmentation. In: CIKM (2021)

    Google Scholar 

  25. Taylor, S.J., Letham, B.: Business time series forecasting at scale. PeerJ Preprints 5:e3190v2 35(8), 48–90 (2017)

    Google Scholar 

  26. Tran, D.H.: Automated change detection and reactive clustering in multivariate streaming data. In: 2019 IEEE-RIVF International Conference on Computing and Communication Technologies (RIVF), pp. 1–6. IEEE (2019)

    Google Scholar 

  27. Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 14(1), 35–62 (1998). https://doi.org/10.1016/S0169-2070(97)00044-7

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation (NSF) EPSCoR grant number OIA-1757207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Bashir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bashir, A., Estrada, T. (2023). DRUM: A Real Time Detector for Regime Shifts in Data Streams via an Unsupervised, Multivariate Framework. In: Wrembel, R., Gamper, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2023. Lecture Notes in Computer Science, vol 14148. Springer, Cham. https://doi.org/10.1007/978-3-031-39831-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39831-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39830-8

  • Online ISBN: 978-3-031-39831-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics