[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Random Hypergraph Model Preserving Two-Mode Clustering Coefficient

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14148))

Included in the following conference series:

  • 639 Accesses

Abstract

Real-world complex systems often involve interactions among more than two nodes, and such complex systems can be represented by hypergraphs. Comparison between a given hypergraph and randomized hypergraphs that preserve specific properties reveal effects or dependencies of the properties on the structure and dynamics. In this study, we extend an existing family of reference models for hypergraphs to generate randomized hypergraphs that preserve the pairwise joint degree distribution and the degree-dependent two-mode clustering coefficient of the original hypergraph. Using empirical hypergraph data sets, we numerically show that the extended model preserves the properties of the node and hyperedge as designed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 47.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 59.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Battiston, F., et al.: The physics of higher-order interactions in complex systems. Nat. Phys. 17, 1093–1098 (2021)

    Article  Google Scholar 

  2. Battiston, F., et al.: Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benson, A.R., Abebe, R., Schaub, M.T., Jadbabaie, A., Kleinberg, J.: Simplicial closure and higher-order link prediction. Proc. Natl. Acad. Sci. 115, E11221–E11230 (2018)

    Article  Google Scholar 

  4. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cimini, G., Squartini, T., Saracco, F., Garlaschelli, D., Gabrielli, A., Caldarelli, G.: The statistical physics of real-world networks. Nat. Rev. Phys. 1, 58–71 (2019)

    Article  Google Scholar 

  6. Gjoka, M., Kurant, M., Markopoulou, A.: 2.5K-graphs: From sampling to generation. In: 2013 Proceedings IEEE INFOCOM, pp. 1968–1976 (2013)

    Google Scholar 

  7. Klimt, B., Yang, Y.: The Enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_22

    Chapter  Google Scholar 

  8. Mahadevan, P., Krioukov, D., Fall, K., Vahdat, A.: Systematic topology analysis and generation using degree correlations. In: Proceedings of the 2006 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp. 135–146 (2006)

    Google Scholar 

  9. Miyashita, R., Nakajima, K., Fukuda, M., Shudo, K.: Randomizing hypergraphs preserving two-mode clustering coefficient. In: 2023 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 316–317 (2023)

    Google Scholar 

  10. Nakajima, K., Shudo, K., Masuda, N.: Randomizing hypergraphs preserving degree correlation and local clustering. IEEE Trans. Netw. Sci. Eng. 9, 1139–1153 (2022)

    Article  MathSciNet  Google Scholar 

  11. Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. 98, 404–409 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)

    Article  Google Scholar 

  13. Opsahl, T.: Triadic closure in two-mode networks: redefining the global and local clustering coefficients. Soc. Netw. 35, 159–167 (2013)

    Article  Google Scholar 

  14. Orsini, C., et al.: Quantifying randomness in real networks. Nat. Commun. 6, 8627 (2015)

    Article  MathSciNet  Google Scholar 

  15. Patania, A., Petri, G., Vaccarino, F.: The shape of collaborations. EPJ Data Sci. 6, 18 (2017)

    Article  MATH  Google Scholar 

  16. StehlÃ, J., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE 6, e23176 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rikuya Miyashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Miyashita, R., Nakajima, K., Fukuda, M., Shudo, K. (2023). Random Hypergraph Model Preserving Two-Mode Clustering Coefficient. In: Wrembel, R., Gamper, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2023. Lecture Notes in Computer Science, vol 14148. Springer, Cham. https://doi.org/10.1007/978-3-031-39831-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39831-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39830-8

  • Online ISBN: 978-3-031-39831-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics