Abstract
Real-world complex systems often involve interactions among more than two nodes, and such complex systems can be represented by hypergraphs. Comparison between a given hypergraph and randomized hypergraphs that preserve specific properties reveal effects or dependencies of the properties on the structure and dynamics. In this study, we extend an existing family of reference models for hypergraphs to generate randomized hypergraphs that preserve the pairwise joint degree distribution and the degree-dependent two-mode clustering coefficient of the original hypergraph. Using empirical hypergraph data sets, we numerically show that the extended model preserves the properties of the node and hyperedge as designed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Battiston, F., et al.: The physics of higher-order interactions in complex systems. Nat. Phys. 17, 1093–1098 (2021)
Battiston, F., et al.: Networks beyond pairwise interactions: structure and dynamics. Phys. Rep. 874, 1–92 (2020)
Benson, A.R., Abebe, R., Schaub, M.T., Jadbabaie, A., Kleinberg, J.: Simplicial closure and higher-order link prediction. Proc. Natl. Acad. Sci. 115, E11221–E11230 (2018)
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)
Cimini, G., Squartini, T., Saracco, F., Garlaschelli, D., Gabrielli, A., Caldarelli, G.: The statistical physics of real-world networks. Nat. Rev. Phys. 1, 58–71 (2019)
Gjoka, M., Kurant, M., Markopoulou, A.: 2.5K-graphs: From sampling to generation. In: 2013 Proceedings IEEE INFOCOM, pp. 1968–1976 (2013)
Klimt, B., Yang, Y.: The Enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_22
Mahadevan, P., Krioukov, D., Fall, K., Vahdat, A.: Systematic topology analysis and generation using degree correlations. In: Proceedings of the 2006 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp. 135–146 (2006)
Miyashita, R., Nakajima, K., Fukuda, M., Shudo, K.: Randomizing hypergraphs preserving two-mode clustering coefficient. In: 2023 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 316–317 (2023)
Nakajima, K., Shudo, K., Masuda, N.: Randomizing hypergraphs preserving degree correlation and local clustering. IEEE Trans. Netw. Sci. Eng. 9, 1139–1153 (2022)
Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. 98, 404–409 (2001)
Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)
Opsahl, T.: Triadic closure in two-mode networks: redefining the global and local clustering coefficients. Soc. Netw. 35, 159–167 (2013)
Orsini, C., et al.: Quantifying randomness in real networks. Nat. Commun. 6, 8627 (2015)
Patania, A., Petri, G., Vaccarino, F.: The shape of collaborations. EPJ Data Sci. 6, 18 (2017)
StehlÃ, J., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE 6, e23176 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Miyashita, R., Nakajima, K., Fukuda, M., Shudo, K. (2023). Random Hypergraph Model Preserving Two-Mode Clustering Coefficient. In: Wrembel, R., Gamper, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2023. Lecture Notes in Computer Science, vol 14148. Springer, Cham. https://doi.org/10.1007/978-3-031-39831-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-39831-5_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-39830-8
Online ISBN: 978-3-031-39831-5
eBook Packages: Computer ScienceComputer Science (R0)