[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Simple Hybrid Local Search Algorithm for Solving Optimization Problems

  • Conference paper
  • First Online:
Computer, Communication, and Signal Processing. AI, Knowledge Engineering and IoT for Smart Systems (ICCCSP 2023)

Abstract

Optimization in engineering is an important domain of operations research that gains a lot of attention nowadays. Optimization may be constrained or unconstrained; single objective or multi-objective. With the extent of computing power available today, optimization algorithms are capable of handling several constraints and more variables. This paper proposes a new, simple hybrid local search metaheuristic algorithm for solving single objective, un-constrained problems in the optimization domain. The new algorithm is a hybrid one that generates the initial population randomly and, iteratively move towards optimal/near-optimal solutions. It uses one tuning parameter and a single random number. The performance is analyzed using ninety-three benchmark functions including the 100-digit challenge test suite of IEEE Congress on Evolutionary Computation (CEC2019). The number of dimensions varies from one to 100. The results obtained are compared with a few efficient algorithms including Sine Cosine Algorithm and Arithmetic Optimization Algorithm. The analyses show that the newly proposed hybrid local search algorithm is effective and competitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 69.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davidon, W.C.: Variable metric method for minimization. SIAM J. Optim. 1(1), 1–17 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fletcher, R., Powell, M.J.: A rapidly convergent descent method for minimization. Comput. J. 6(2), 163–168 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  3. Powell, M.J.: Algorithms for nonlinear constraints that use Lagrangian functions. Math. Program. 14(1), 224–248 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT press, London (1992)

    Book  Google Scholar 

  5. Martins, J.R., Ning, A.: Engineering Design Optimization. Cambridge University Press, Cambridge (2021)

    Book  MATH  Google Scholar 

  6. Rios, L.M., Sahinidis, N.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Global Optim. 56(3), 1247–1293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical problems. J. ACM 8(2), 212–229 (1961)

    Article  MATH  Google Scholar 

  8. Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, pp. 302–311. Association for Computing Machinery, New York (1984)

    Google Scholar 

  9. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search heuristics in black-box optimization. Theory of Comput. Syst. 39(4), 525–544 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Rao, R.: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7(1), 19–34 (2016)

    Google Scholar 

  11. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)

    Article  Google Scholar 

  12. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  13. Baskar, A.: New simple trigonometric algorithms for solving optimization problems. J. Applied Sci. Eng. 25(6), 1105–1120 (2022). https://doi.org/10.6180/jase.202212_25(6).0020

    Article  Google Scholar 

  14. Baskar, A.: Sine (B): a single randomized population-based algorithm for solving optimization problems. Materials Today – Proceedings 62(7), 4745–4751 (2022). https://doi.org/10.1016/j.matpr.2022.03.253

  15. Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., Gandomi, A.H.: The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 376, 113609 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Agushaka, J.O., Ezugwu, A.E.: Advanced arithmetic optimization algorithm for solving mechanical engineering design problems. PLoS ONE 16(8), e0255703 (2021). https://doi.org/10.1371/journal.pone.0255703

    Article  Google Scholar 

  17. Hashim, F.A., Hussain, K., Houssein, E.H., Mabrouk, M.S., Al-Atabany, W.: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl. Intell. 51(3), 1531–1551 (2020)

    Article  MATH  Google Scholar 

  18. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  19. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  20. Mohammed, H., Rashid, T.: A novel hybrid GWO with WOA for global numerical optimization and solving pressure vessel design. Neural Comput. Appl. 32(18), 14701–14718 (2020)

    Article  Google Scholar 

  21. Mohammed, H.M., Umar, S.U., Rashid, T.A.: A systematic and meta-analysis survey of whale optimization algorithm. Comput. Intell. Neurosci. (2019). https://doi.org/10.1155/2019/8718571

    Article  Google Scholar 

  22. Baskar, A., Anthony Xavior, M.: A four-point direction search heuristic algorithm applied to facility location on plane, sphere, and ellipsoid surfaces. J. Operational Res. Soc. 73(11), 2385–2394 (2021). https://doi.org/10.1080/01605682.2021.1984185

    Article  Google Scholar 

  23. Test Functions Homepage. http://infinity77.net/global_optimization/test_functions.html. Accessed 01 Nov 2021

  24. Price, K.V., Awad, N.H., Ali, M.Z., Suganthan, P.N.: The 100-digit challenge: problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Nanyang Technological University (2018)

    Google Scholar 

  25. Syedalimirjalili Homepage. https://seyedalimirjalili.com/aoa. Accessed 4 Nov 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baskar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baskar, A., Anthony Xavior, M. (2023). A Simple Hybrid Local Search Algorithm for Solving Optimization Problems. In: Mercier-Laurent, E., Fernando, X., Chandrabose, A. (eds) Computer, Communication, and Signal Processing. AI, Knowledge Engineering and IoT for Smart Systems. ICCCSP 2023. IFIP Advances in Information and Communication Technology, vol 670. Springer, Cham. https://doi.org/10.1007/978-3-031-39811-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39811-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39810-0

  • Online ISBN: 978-3-031-39811-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics