Abstract
We introduce a new type of mixing layer for the round function of cryptographic permutations, called circulant twin column parity mixer (CPM), that is a generalization of the mixing layers in Keccak-\(f\) and Xoodoo. While these mixing layers have a bitwise differential branch number of 4 and a computational cost of 2 (bitwise) additions per bit, the circulant twin CPMs we build have a bitwise differential branch number of 12 at the expense of an increase in computational cost: depending on the dimension this ranges between 3 and 3.34 XORs per bit. Our circulant twin CPMs operate on a state in the form of a rectangular array and can serve as mixing layer in a round function that has as non-linear step a layer of S-boxes operating in parallel on the columns. When sandwiched between two ShiftRow-like mappings, we can obtain a columnwise branch number of 12 and hence it guarantees 12 active S-boxes per two rounds in differential trails. Remarkably, the linear branch numbers (bitwise and columnwise alike) of these mappings is only 4. However, we define the transpose of a circulant twin CPM that has linear branch number of 12 and a differential branch number of 4. We give a concrete instantiation of a permutation using such a mixing layer, named Gaston. It operates on a state of \(5 \times 64\) bits and uses \(\chi \) operating on columns for its non-linear layer. Most notably, the Gaston round function is lightweight in that it takes as few bitwise operations as the one of NIST lightweight standard Ascon. We show that the best 3-round differential and linear trails of Gaston have much higher weights than those of Ascon. Permutations like Gaston can be very competitive in applications that rely for their security exclusively on good differential properties, such as keyed hashing as in the compression phase of Farfalle.
R. H. Makarim—Independent Researcher.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Barreto, P., Rijmen, V.: The WHIRLPOOL hashing function. Submitted to NESSIE, Sept 2000, revised May 2003. https://citeseerx.ist.psu.edu/document?repid=rep1 &type=pdf &doi=664b5286124b28abf2d30a07ba6f9e020f4138fe
Beierle, C., Kranz, T., Leander, G.: Lightweight multiplication in \(GF(2^n)\) with applications to MDS matrices. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 625–653. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_23
Bertoni, G., Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Farfalle: parallel permutation-based cryptography. IACR Trans. Symmetric Cryptol. 2017(4), 1–38 (2017). https://tosc.iacr.org/index.php/ToSC/article/view/801
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. Ecrypt Hash Workshop 2007 (2007)
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference (2011). https://keccak.team/papers.html
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Permutation-based encryption, authentication and authenticated encryption. In: Directions in Authenticated Ciphers (2012)
Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_1
Bordes, N., Daemen, J., Kuijsters, D., Van Assche, G.: Thinking outside the Superbox. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 337–367. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_12
Canteaut, A., et al.: Saturnin: a suite of lightweight symmetric algorithms for post-quantum security. IACR Trans. Symmetric Cryptol. 2020(S1), 160–207 (2020). https://doi.org/10.13154/tosc.v2020.iS1.160-207
Cui, T., Grassi, L.: Algebraic key-recovery attacks on reduced-round Xoofff. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 171–197. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81652-0_7
Daemen, J., Hoffert, S., Van Assche, G., Van Keer, R.: The design of Xoodoo and Xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018). https://tosc.iacr.org/index.php/ToSC/article/view/7359
Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography, Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4
Daemen, J.: Cipher and hash function design, strategies based on linear and differential cryptanalysis, Ph D. Thesis, K.U.Leuven (1995). http://jda.noekeon.org/
Daemen, J., Mella, S., Van Assche, G.: Tighter trail bounds for Xoodoo. IACR Cryptol. ePrint Arch, p. 1088 (2022). https://eprint.iacr.org/2022/1088
Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. submission to NIST Lightweight Cryptography Standardization Process (round 2) (2019). https://ascon.iaik.tugraz.at/
Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: lightweight authenticated encryption and hashing. J. Cryptol. 34(3), 1–42 (2021). https://doi.org/10.1007/s00145-021-09398-9
Duval, S., Leurent, G.: MDS matrices with lightweight circuits. IACR Trans. Symmetric Cryptol. 2018(2), 48–78 (2018). https://doi.org/10.13154/tosc.v2018.i2.48-78
El Hirch, S., Mella, S., Mehrdad, A., Daemen, J.: Improved differential and linear trail bounds for ASCON. IACR Trans. Symmetric Cryptol. 2022(4), 145–178 (2022). https://doi.org/10.46586/tosc.v2022.i4.145-178
Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom permutation. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 210–224. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1_17
Fuchs, J., Rotella, Y., Daemen, J.: On the security of keyed hashing based on an unkeyed block function. IACR Cryptol. ePrint Arch, p. 1172 (2022). https://eprint.iacr.org/2022/1172
Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_13
Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_22
Kranz, T., Leander, G., Stoffelen, K., Wiemer, F.: Shorter linear straight-line programs for MDS matrices. IACR Trans. Symmetric Cryptol. 2017(4), 188–211 (2017). https://doi.org/10.13154/tosc.v2017.i4.188-211
Li, C., Wang, Q.: Design of lightweight linear diffusion layers from near-MDS matrices. IACR Trans. Symmetric Cryptol. 2017(1), 129–155 (2017). https://doi.org/10.13154/tosc.v2017.i1.129-155
Li, S., Sun, S., Shi, D., Li, C., Hu, L.: Lightweight iterative MDS matrices: How small can we go? IACR Trans. Symmetric Cryptol. 2019(4), 147–170 (2019). https://doi.org/10.13154/tosc.v2019.i4.147-170
Li, Y., Wang, M.: On the construction of lightweight circulant involutory MDS matrices. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 121–139. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_7
Liu, M., Sim, S.M.: Lightweight MDS generalized circulant matrices. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 101–120. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_6
Makarim, R.H., Rohit, R.: Towards tight differential bounds of Ascon: a hybrid usage of SMT and MILP. IACR Trans. Symmetric Cryptol. 2022(3), 303–340 (2022). https://doi.org/10.46586/tosc.v2022.i3.303-340
Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-47555-9_7
Mella, S., Daemen, J., Van Assche, G.: New techniques for trail bounds and application to differential trails in Keccak. IACR Trans. Symmetric Cryptol. 2017(1), 329–357 (2017)
National Institute of Standards and Technology: Lightweight Cryptography (LWC) Standardization project (2019). https://csrc.nist.gov/projects/lightweight-cryptography
Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., De Win, E.: The cipher SHARK. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 99–111. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60865-6_47
Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution matrices. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 471–493. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_23
Stoffelen, K., Daemen, J.: Column parity mixers. IACR Trans. Symmetric Cryptol. 2018(1), 126–159 (2018). https://doi.org/10.13154/tosc.v2018.i1.126-159
Venkateswarlu, A., Kesarwani, A., Sarkar, S.: On the lower bound of cost of MDS matrices. IACR Trans. Symmetric Cryptol. 2022(4), 266–290 (2022). https://doi.org/10.46586/tosc.v2022.i4.266-290
Acknowledgements
Solane El Hirch is supported by the Cryptography Research Center of the Technology Innovation Institute (TII), Abu Dhabi (UAE), under the TII-Radboud project with title Evaluation and Implementation of Lightweight Cryptographic Primitives and Protocols. Joan Daemen is supported by the European Research Council under the ERC advanced grant agreement under grant ERC-2017-ADG Nr. 788980 ESCADA. Rusydi H. Makarim did this work while he was at the Cryptography Research Center of the Technology Innovation Institute (TII), Abu Dhabi (UAE). We would also like to thank the reviewers of CRYPTO 2023 and our shepherd Bart Preneel for their insightful suggestions which helped us in significantly improving the quality of paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
El Hirch, S., Daemen, J., Rohit, R., Makarim, R.H. (2023). Twin Column Parity Mixers and Gaston. In: Handschuh, H., Lysyanskaya, A. (eds) Advances in Cryptology – CRYPTO 2023. CRYPTO 2023. Lecture Notes in Computer Science, vol 14083. Springer, Cham. https://doi.org/10.1007/978-3-031-38548-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-38548-3_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-38547-6
Online ISBN: 978-3-031-38548-3
eBook Packages: Computer ScienceComputer Science (R0)