[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Consensus on an Unknown Torus with Dense Byzantine Faults

  • Conference paper
  • First Online:
Networked Systems (NETYS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14067))

Included in the following conference series:

Abstract

We present a solution to consensus on a torus with Byzantine faults. Any solution to classic consensus that is tolerant to f Byzantine faults requires \(2f+1\) node-disjoint paths. Due to limited torus connectivity, this bound necessitates spatial separation between faults. Our solution does not require this many disjoint paths and tolerates dense faults.

Specifically, we consider the case where all faults are in one column. We address the version of consensus where only processes in fault-free columns must agree. We prove that even this weaker version is not solvable if the column may be completely faulty. We then present a solution for the case where at least one row is fault-free. The correct processes share orientation but do not know the identities of other processes or the torus dimensions. The communication is synchronous.

To achieve our solution, we build and prove correct an all-to-all broadcast algorithm \(\mathcal {BAT}\) that guarantees delivery to all processes in fault-free columns. We use this algorithm to solve our weak consensus problem. Our solution, \(\mathcal {CBAT}\), runs in \(O(H+W)\) rounds, where H and W are torus height and width respectively. We extend our consensus solution to the fixed message size model where it runs in \(O(H^3W^2)\) rounds. Our results are immediately applicable if the faults are located in a single row, rather than a column.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 39.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, I., Devadas, S., Nayak, K., Ren, L.: Brief announcement: practical synchronous byzantine consensus. In: 31st International Symposium on Distributed Computing (DISC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  2. Alchieri, E.A.P., Bessani, A.N., da Silva Fraga, J., Greve, F.: Byzantine consensus with unknown participants. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 22–40. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92221-6_4

    Chapter  Google Scholar 

  3. Alchieri, E.A.P., Bessani, A.N., da Silva Fraga, J., Greve, F.: Byzantine consensus with unknown participants. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 22–40. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92221-6_4

    Chapter  Google Scholar 

  4. Ben-Or, M.: Another advantage of free choice (extended abstract) completely asynchronous agreement protocols. In: Proceedings of the Second Annual ACM Symposium on Principles of Distributed Computing, pp. 27–30 (1983)

    Google Scholar 

  5. Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network. In: Proceedings of the Twenty-fourth Annual ACM Symposium on Principles of Distributed Computing, pp. 138–147 (2005)

    Google Scholar 

  6. Chandy, K., Misra, J.: Parallel program design: a foundation. Addison Wesley Publishing Co., (1988)

    Google Scholar 

  7. Chlebus, B.S., Kowalski, D.R., Olkowski, J.: Fast agreement in networks with byzantine nodes. In: 34th International Symposium on Distributed Computing (DISC 2020) (2020)

    Google Scholar 

  8. Dolev, D.: The byzantine generals strike again. J. Algorithms 3(1), 14–30 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM J. Comput. 12(4), 656–666 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous byzantine agreement. SIAM J. Comput. 26(4), 873–933 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed consensus problems. Distrib. Comput. 1, 26–39 (1986)

    Article  MATH  Google Scholar 

  12. Ganesan, P., Yang, B., Garcia-Molina, H.: One torus to rule them all: multi-dimensional queries in P2P systems. In: Proceedings of the 7th International Workshop on the Web and Databases: colocated with ACM SIGMOD/PODS 2004, pp. 19–24 (2004)

    Google Scholar 

  13. Kandlur, D.D., Shin, K.G.: Reliable broadcast algorithms for harts. ACM Trans. Comput. Syst. (TOCS) 9(4), 374–398 (1991)

    Article  Google Scholar 

  14. Katz, J., Koo, C.-Y.: On expected constant-round protocols for byzantine agreement. J. Comput. Syst. Sci. 75(2), 91–112 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koo, C.-Y.: Broadcast in radio networks tolerating byzantine adversarial behavior. In: Proceedings of the Twenty-third Annual ACM Symposium on Principles of Distributed Computing, pp. 275–282 (2004)

    Google Scholar 

  16. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  17. Maurer, A., Tixeuil, S.: Byzantine broadcast with fixed disjoint paths. J. Parallel Distrib. Comput. 74(11), 3153–3160 (2014)

    Article  Google Scholar 

  18. Nesterenko, M., Tixeuil, S.: Discovering network topology in the presence of byzantine faults. In: International Colloquium on Structural Information and Communication Complexity, pages 212–226. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/11780823_17

  19. Oglio, J., Hood, K., Sharma, G., Nesterenko, M.: Byzantine Geoconsensus. In: Echihabi, K., Meyer, R. (eds.) NETYS 2021. LNCS, vol. 12754, pp. 19–35. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91014-3_2

    Chapter  Google Scholar 

  20. Oglio, J., Hood, K., Sharma, G., Nesterenko, M.: Consensus on unknown torus with dense byzantine faults. arXiv preprint arXiv:2303.12870 (2023)

  21. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J. ACM (JACM) 27(2), 228–234 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults. Inf. Process. Lett. 93(3), 109–115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Peleg, D.: Distributed computing: a locality-sensitive approach. SIAM (2000)

    Google Scholar 

  24. Rabin, M.O.: Randomized byzantine generals. In: 24th Annual Symposium on Foundations of Computer Science (SFCS 1983), pp. 403–409. IEEE (1983)

    Google Scholar 

  25. Tseng, L., Vaidya, N.H.: Fault-tolerant consensus in directed graphs. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, pp. 451–460 (2015)

    Google Scholar 

  26. Winkler, K., Schwarz, M., Schmid, U.: Consensus in rooted dynamic networks with short-lived stability. Distrib. Comput. 32(5), 443–458 (2019). https://doi.org/10.1007/s00446-019-00348-0

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Nesterenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oglio, J., Hood, K., Sharma, G., Nesterenko, M. (2023). Consensus on an Unknown Torus with Dense Byzantine Faults. In: Mohaisen, D., Wies, T. (eds) Networked Systems. NETYS 2023. Lecture Notes in Computer Science, vol 14067. Springer, Cham. https://doi.org/10.1007/978-3-031-37765-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37765-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37764-8

  • Online ISBN: 978-3-031-37765-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics