[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Analogs of Image Analysis Tools in the Search of Latent Regularities in Applied Data

  • Conference paper
  • First Online:
Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges (ICPR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13644))

Included in the following conference series:

  • 462 Accesses

Abstract

The problem of detecting hidden latent regularities in large-scale applied data is investigated. A new approach is presented, where the possibilities of using multidimensional analogs of image processing and understanding methods adapted for higher dimensions are studied. Several promising options for combining practical competencies while solving applied problems from these positions are presented, and some prospects for further development of the approach are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binos, T., Adamopoulos, A., Vince, B.: Decision support research in warehousing and distribution: a systematic literature review. Int. J. Inf. Technol. Decis. Mak. 19(03), 653–693 (2020)

    Article  Google Scholar 

  2. Coleman, S.Y., Kenett, R.S.: The information quality framework for evaluating data science programs. In: Encyclopedia with Semantic Computing and Robotic Intelligence, vol. 02, no. 02 (2018)

    Google Scholar 

  3. De Mauro, A., Greco, M., Grimaldi, M.: Understanding Big Data through a systematic literature review: the ITMI model. Int. J. Inf. Technol. Decis. Making 18(04), 1433–1461 (2019)

    Google Scholar 

  4. Dokukin, A.: Classless logical regularities and outliers detection. In: Krasnoproshin, V., Ablameyko, S. (eds.) Pattern Recognition and Information Processing, PRIP 2016. Communications in Computer and Information Science, vol. 673, pp. 44–52. Springer, Cham (20217). https://doi.org/10.1007/978-3-319-54220-1_5

  5. Dokukin, A., Zhuravlev, Yu., Senko, O., Stefanovskiy, D.: Matematicheskaya model’ vydeleniya grupp soputstvuyushchikh tovarov v roznichnoy torgovle po cyfrovym sledam. Ekonomicheskie strategii 2, 116–124 (2019)

    Google Scholar 

  6. Ren, F., Bao, Y.: A Review on Human-Computer Interaction and Intelligent Robots. Int. J. Inf. Technol. Decis. Mak. 19(01), 5–47 (2020)

    Article  Google Scholar 

  7. Ko, A., Gillani, S.: A research review and taxonomy development for decision support and business analytics using semantic text mining. Int. J. Inf. Technol. Decis. Mak. 19(01), 97–126 (2020)

    Article  Google Scholar 

  8. Kuznetsova, A.V., Kostomarova, I.V., Senko, O.V.: Modification of the method of optimal valid partitioning for comparison of patterns related to the occurence of ischemic stroke in two groups of patients. Pattern Recognit. Image Anal. 22(4), 10–25 (2013)

    Google Scholar 

  9. Laptin, Y., Nelyubina, E.A., Ryazanov, V.V., Vinogradov, A.P.: Shape of basic clusters: using analogues of hough transform in higher dimensions. Pattern Recognit. Image Anal. 28(4), 653–658 (2018)

    Article  Google Scholar 

  10. Naouali, S., Ben Salem, S., Chtourou, Z.: Clustering categorical data: a survey. Int. J. Inf. Technol. Decis. Mak. 19(01), 49–96 (2020)

    Google Scholar 

  11. Naumov, V.A., Nelyubina, E.A., Ryazanov, V.V., Vinogradov, A.P.: Analysis and prediction of hydrological series based on generalized precedents. In: Book of abstracts of the 12th International Conference on Intelligent Data Processing, IDP-12, Gaeta, Italy, pp. 178–179 (2018)

    Google Scholar 

  12. Nelyubina, E., Ryazanov, V., Vinogradov, A.: Shape of basic clusters: finding coherent ELR-2s via Hough- type transform. In: Proceedings of ICPRAI 2018 - International Conference on Pattern Recognition and Artificial Intelligence, Montréal, Canada, 14–17 May, pp. 702–706. CENPARMI, Concordia University (2018)

    Google Scholar 

  13. Nelyubina, E., Ryazanov, V., Vinogradov, A.: Transforms of Hough type in abstract feature space: generalized precedents. In: Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2017, Porto, Portugal, vol. 4, pp. 651–656 (2017)

    Google Scholar 

  14. Pace, A.: Technologies for large data management in scientific computing. Int. J. Mod. Phys. C 25(02), 1430001 (2014)

    Google Scholar 

  15. Pesarin, F., Salmaso, L.: Permutation Tests for Complex Data. Theory, Applications and Software. Wiley (2010)

    Google Scholar 

  16. Rahmati, B., Sohrabi, M.K.: A systematic survey on high utility itemset mining. Int. J. Inf. Technol. Decis. Mak. 18(04), 1113–1185 (2019)

    Article  Google Scholar 

  17. Ryazanov, V., Vinogradov, A.: Dealing with realizations of hidden regularities in data as independent generalized precedents. In: IEEE Xplore Proceedings of 2021 International Conference on Information Technology and Nanotechnology, ITNT-2021, pp. 1–3 (2021)

    Google Scholar 

  18. Ryazanov, V.V.: Logicheskie zakonomernosti v zagachakh raspoznavayiya (parametricheskiy podkhod). Zhurnal Vychislitelnoy Matematiki i Matematicheskoy Fiziki 47(10), 1793–1808 (2007)

    Google Scholar 

  19. Ryazanov, V.V., Vinogradov, A.P., Laptin, Y.: Using generalized precedents for big data sample compression at learning. J. Mach. Learn. Data Anal. 1(1), 1910–1918 (2015)

    Article  Google Scholar 

  20. Ryazanov, V., Vinogradov, A., Laptin, Y.: Assembling decision rule on the base of generalized precedents. Inf. Theor. Appl. 23(3), 264–272 (2016)

    Google Scholar 

  21. Vinogradov, A., Laptin, Yu.: Using bit representation for generalized precedents. In: Proceedings of International Workshop OGRW-9, Koblenz, Germany, December 2014, pp. 281–283 (2015)

    Google Scholar 

  22. Vinogradov, A., Laptin, Yu.: Mining coherent logical regularities of type 2 via positional preprocessing. In: Proceedings of the 4th International Workshop on Image Mining: Theory and Applications, Barcelona, pp. 56–62. INSTICC Press, Portugal (2013)

    Google Scholar 

  23. Zhang, C., Chen, Y.: A review of research relevant to the emerging industry trends: Industry 4.0, IoT, Blockchain, and Business Analytics. J. Ind. Integr. Manage. 05(01), 165–180 (2020)

    Google Scholar 

  24. Zhuravlev, Yu.I., Ryazanov, V.V., Senko, O.V.: RASPOZNAVANIE. Matematicheskie metody. Programmnaya sistema. Prakticheskie primeneniya. Izdatelstvo “FAZIS”, Moscow, 168 str. (2006)

    Google Scholar 

  25. Zhuravlev, Yu., Dokukin, A., Senko, O., Stefanovskiy, D.: Use of clasterization technique to highlight groups of related goods by digital traces in retail trade. In: Proceedings of 9th International Conference on Advanced Computer Information Technologies, ACIT-2019, pp. 84–88 (2019)

    Google Scholar 

  26. Zhuravlev, Yu.I., Sen’ko, O.V., Bondarenko, N.N., Ryazanov, V.V., Dokukin, A.A., Vinogradov, A.P.: A method for predicting rare events by multidimensional time series with the use of collective methods. Pattern Recogn. Image Anal. 29(4), 763–768 (2019)

    Google Scholar 

  27. Zhuravlev, Y.I., Sen’ko, O.V., Bondarenko, N.N., Ryazanov, V.V., Dokukin, A. A., Vinogradov, A.P.: Issledovanie vozmozhnosti prognozirovaniya izmeneniy finansovogo sostoyaniya kreditnoy organizacii na osnove publikuemoy otchetnosti. Informatika i eyo primeneniya 13(4), 32–37 (2019)

    Google Scholar 

  28. Zhuravlev, Yu.I., et al.: Using Hough-like transforms for extracting relevant regularities from big applied data. Pattern Recogn. Image Anal. 31(4), 699–709 (2021)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by project 20-01-00609 of the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Vinogradov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nelyubina, E., Ryazanov, V., Vinogradov, A. (2023). Analogs of Image Analysis Tools in the Search of Latent Regularities in Applied Data. In: Rousseau, JJ., Kapralos, B. (eds) Pattern Recognition, Computer Vision, and Image Processing. ICPR 2022 International Workshops and Challenges. ICPR 2022. Lecture Notes in Computer Science, vol 13644. Springer, Cham. https://doi.org/10.1007/978-3-031-37742-6_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37742-6_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37741-9

  • Online ISBN: 978-3-031-37742-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics