[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Categorization of Health Determinants into an EHR Paradigm Based on HL7 FHIR

  • Conference paper
  • First Online:
Information and Communication Technologies for Ageing Well and e-Health (ICT4AWE 2021, ICT4AWE 2022)

Abstract

Healthcare platforms are included in multiple domain-related systems which however produce and provide individual and unlinked data to other systems, with high heterogeneity among them. The concept of mapping data from healthcare platforms to other citizens’ daily data could create advantages in identifying and finding better decisions, strategies or guidelines against multiple diseases. In detail, in the current environment where there exist multiple data sources producing hundreds of megabytes of data, the creation of a baseline that aggregates and correlates clinical information, avoiding uncertainties, is mandatory. The current paper presents a new Electronic Health Record (EHR) paradigm, the Holistic Health Records (HHRs), as a form of health records that aggregate data from multiple sources and can provide a complete overview of a citizen, containing several health determinants. This information may be produced by several platforms and devices, at different times of the patient’s life, including data related to the daily activities, the social behavior, the vital signs, the personal examination, or the treatment of a citizen. Several standardization organisms define healthcare standards towards an interoperable healthcare ecosystem, with HL7 Fast Healthcare Interoperability Resources (FHIR) being the standard that best suits the purpose of the HHRs. Consequently, the HHRs and the models that finally construct this new EHR paradigm, are based on HL7 FHIR, including data related with the citizens’ roles, the healthcare organizations, results deriving from diagnosis and clinical findings, as well as daily habits. The main goal of the HHR model is to facilitate and guarantee interoperability, being constructed based on existing FHIR libraries, having an additional goal to be also used as an independent component that can be tailored and adjusted for not only exchanging health data, but also categorizing it and classifying it into similar groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mavrogiorgou, A., Kiourtis, A., Kyriazis, D.: Plug‘n’play IoT devices: an approach for dynamic data acquisition from unknown heterogeneous devices. In: Barolli, L., Terzo, O. (eds.) CISIS 2017. AISC, vol. 611, pp. 885–895. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61566-0_84

    Chapter  Google Scholar 

  2. Kiourtis, A., Nifakos, S., Mavrogiorgou, A., Kyriazis, D.: Aggregating the syntactic and semantic similarity of healthcare data towards their transformation to HL7 FHIR through ontology matching. Int. J. Med. Inform. 132, 104002 (2019)

    Google Scholar 

  3. Geßner, S., et al.: The portal of medical data models: where have we been and where are we going? In: Studies in Health Technology and Informatics, pp. 858–862. IOS Press (2017)

    Google Scholar 

  4. openEHR. https://www.openehr.org/. Accessed 19 July 2021

  5. HL7 FHIR. https://www.hl7.org/fhir/. Accessed 19 July 2021

  6. Kiourtis, A., Mavrogiorgou, A., Menychtas, A., Maglogiannis, I., Kyriazis, D.: Structurally mapping healthcare data to HL7 FHIR through ontology alignment. J. Med. Syst. 43(3), 62 (2019)

    Article  Google Scholar 

  7. LOINC. https://loinc.org/. Accessed 19 July 2021

  8. SNOMED CT. http://www.snomed.org/. Accessed 19 July 2021

  9. ICD-10 Version: 2016. https://icd.who.int/browse10/2016/en. Accessed 19 July 2021

  10. ICD-9 Data. http://www.icd9data.com/. Accessed 19 July 2021

  11. What is CPT. https://www.aapc.com/resources/medical-coding/cpt.aspx. Accessed 19 July 2021

  12. Smith, B., et al.: The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat. Biotechnol. 25, 1251–1255 (2007)

    Article  Google Scholar 

  13. Kiourtis, A., Mavrogiorgou, A., Kyriazis, D.: Aggregating heterogeneous health data through an ontological common health language. In: 10th International Conference on Developments in eSystems Engineering, pp. 175–181 (2017)

    Google Scholar 

  14. Zhe, H.E., Geller, H.: Preliminary analysis of difficulty of importing pattern-based concepts into the National Cancer Institute thesaurus. Stud. Health Technol. Inform. 228–389 (2002)

    Google Scholar 

  15. Noy, N.F., et al.: BioPortal: ontologies and integrated data resources at the click of a mouse, Nucleic acids research. Nucleic Acids Res. 170–173 (2009)

    Google Scholar 

  16. Mossakowski, T., Kutz, O., Codescu, M.: Ontohub: a semantic repository for heterogeneous ontologies. In: Proceedings of DACS. CiteSeer (2014)

    Google Scholar 

  17. Lipscomb, C.E.: Medical subject headings (MeSH). Bull. Med. Libr. Assoc. 265 (2000)

    Google Scholar 

  18. Lindberg, C.: The unified medical language system (UMLS) of the national library of medicine. J. Am. Med. Rec. Assoc. 40–42 (1990)

    Google Scholar 

  19. Fontelo, P., Liu, F., Ackerman, M.: ask MEDLINE: a free-text, natural language query tool for MEDLINE/PubMed. BMC Med. Inf. Decis. Making 5 (2005). https://doi.org/10.1186/1472-6947-5-5

  20. Liu, S., et al.: RxNorm: prescription for electronic drug information exchange. IT Prof. 17–23 (2005)

    Google Scholar 

  21. Kyriazis, D., et al.: CrowdHEALTH: holistic health records and big data analytics for health policy making and personalized health. Stud Health Technol. Inform. 19–23 (2017)

    Google Scholar 

  22. Kiourtis, A., Mavrogiorgou, A., Kyriazis, D., Torelli, F., Martino, D., De Nigro, A.: Holistic health records towards personalized healthcare. In: Proceedings of the 7th International Conference on Information and Communication Technologies for Ageing Well and e-Health (ICT4AWE 2021), pp. 78–89 (2021)

    Google Scholar 

  23. Pérez-Rey, D., et al.: SNOMED2HL7: a tool to normalize and bind SNOMED CT concepts to the HL7 reference information model. Comput. Methods Programs Biomed. 149, 1–9 (2017)

    Google Scholar 

  24. Gardner, B.J., et al.: Incorporating a location-based socioeconomic index into a de-identified i2b2 clinical data warehouse. J. Am. Med. Inform. Assoc. 26(4), 286–293 (2019)

    Google Scholar 

  25. Papez, V., et al.: Transforming and evaluating electronic health record disease phenotyping algorithms using the OMOP common data model: a case study in heart failure. J. Am. Med. Inform. Assoc. (2021)

    Google Scholar 

  26. Diastema project. https://diastema.gr/. Accessed 19 July 2021

  27. CrowdHEALTH D3.1 - Health Record Structure: Design and Open Specification v1. https://www.crowdhealth.eu/sites/default/files/crowdhealth/public/content-files/deliverables/CrowdHEALTH_D3.1%20_Holistic_Health_Record_Design_Open_%20Specification%20v1.1.pdf. Accessed 19 July 2021

  28. CrowdHEALTH D3.3 Health Record Structure: Software prototype v1. https://www.crowdhealth.eu/sites/default/files/crowdhealth/public/content-files/deliverables/CrowdHEALTH_D3.3%20Health%20Record%20Structure%20Software%20prototype%20v1.1.pdf. Accessed 19 July 2021

Download references

Acknowledgment

The research leading to the results presented in this paper has received funding from the European Union’s funded project CrowdHEALTH under Grant Agreement no 727560. The research has been also co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship, and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code: DIASTEMA - T2EDK-04612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Kiourtis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiourtis, A. et al. (2023). Categorization of Health Determinants into an EHR Paradigm Based on HL7 FHIR. In: Maciaszek, L.A., Mulvenna, M.D., Ziefle, M. (eds) Information and Communication Technologies for Ageing Well and e-Health. ICT4AWE ICT4AWE 2021 2022. Communications in Computer and Information Science, vol 1856. Springer, Cham. https://doi.org/10.1007/978-3-031-37496-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37496-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37495-1

  • Online ISBN: 978-3-031-37496-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics