[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Integration of Copernicus Data and Services to Assess Local Aridity Conditions in the Apulian Context: The Case of Marina di Ginosa

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2023 Workshops (ICCSA 2023)

Abstract

Water is a fundamental element for life on the Earth. Its availability, at a local scale, depends on the climate as well as on how it is managed and distributed for human use. Nowadays, water scarcity is a major concern in many parts of the world, also in relation to the possible effects of climate change and urbanization. The aim of this study is to integrate various Copernicus and other free and open data in order to calculate the main components of the water balance as defined by ISPRA’s BIGBANG procedure. The territory of a basin including the locality of Marina di Ginosa, in southern Italy, was chosen as study site. All the analyses were carried out in the Google Earth Engine cloud environment, where a proper JavaScript code was developed. The estimation made it possible to retrieve monthly maps of the hydrological variables from October 2015 to September 2018 at a geometric resolution of 10 m, and to assess local drought conditions by applying the FAO-UNEP aridity index. Even if this approach is affected by uncertainties owing to the schematic representation of the natural processes, it is a valuable tool for analyzing the spatial and temporal fluctuations of the water resource availability, especially in critical areas of southern Italy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 59.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 74.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caretta, M.A., et al.: Water. In: Pörtner, H.-O., et al. (eds.) Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 551–712. Cambridge University Press, Cambridge, UK and New York, NY, USA (2022)

    Google Scholar 

  2. Konapala, G., Mishra, A.K., Wada, Y., Mann, M.E.: Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 3044 (2020)

    Article  Google Scholar 

  3. Haddeland, I., et al.: Global water resources affected by human interventions and climate change. PNAS 111, 3251–3256 (2013)

    Article  Google Scholar 

  4. Grillakis, M.G.: Increase in severe and extreme soil moisture droughts for Europe under climate change. Sci. Total Environ. 660, 1245–1255 (2019)

    Article  Google Scholar 

  5. Manfreda, S., Iacobellis, V., Fiorentino, M.: Appunti di idrologia superficiale, 1st edn. Aracne editrice, Roma (2010)

    Google Scholar 

  6. ASCE: Hydrology handbook. ASCE Manuals and Reports on Engineering Practice No. 28, 2nd edn. American Society of Civil Engineering, New York (1996)

    Google Scholar 

  7. Balha, A., Vishwakarma, B.D., Pandey, S., Singh, C.K.: Predicting impact of urbanization on water resources in megacity Delhi. Remote Sens. Appl.: Soc. Environ. 20, 100361 (2020)

    Google Scholar 

  8. Ge Sun, C.L., et al.: Impacts of urbanization on watershed water balances across the conterminous United States. Water Resour. Res. 56 (2020)

    Google Scholar 

  9. Daba, M.H., Bazi, Z., Belay, A.: Effects of climate change on soil and water resources: a review. J. Environ. Earth Sci. 8, 71–80 (2018)

    Google Scholar 

  10. Grusson, Y., Wesström, I., Svedberg, E., Joel, A.: Influence of climate change on water partitioning in agricultural watersheds: examples from Sweden. Agric. Water Manag. 249, 106766 (2021)

    Article  Google Scholar 

  11. Braca, G., Bussettini, M., Ducci, D., Lastoria, B., Mariani, S.: Evaluation of national and regional groundwater resources under climate change scenarios using a GIS-based water budget procedure. Rendiconti Lincei. Scienze Fisiche e Naturali 30(1), 109–123 (2019). https://doi.org/10.1007/s12210-018-00757-6

    Article  Google Scholar 

  12. Copernicus Climate Change Service: Water management. https://climate.copernicus.eu/water-management. Last accessed 31 Mar 2023

  13. Braca, G., Bussettini, M., Lastoria, B., Mariani, S., Piva, F.: Il Bilancio Idrologico Gis Based a scala Nazionale su Griglia regolare – BIGBANG: metodologia e stime. Rapporto sulla disponibilità naturale della risorsa idrica. Istituto Superiore per la Protezione e la Ricerca Ambientale, Rapporti 339/21, Roma (2021)

    Google Scholar 

  14. Braca, G., Ducci, D.: Development of a GIS Based Procedure (BIGBANG 1.0) for Evaluating Groundwater Balances at National Scale and Comparison with Groundwater Resources Evaluation at Local Scale. In: Calvache, M.L., Duque, C., Pulido-Velazquez, D. (eds.) Groundwater and Global Change in the Western Mediterranean Area. EES, pp. 53–61. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-69356-9_7

    Chapter  Google Scholar 

  15. Moghim, S.: Assessment of water storage changes using GRACE and GLDAS. Water Resour. Manage. 34(2), 685–697 (2020). https://doi.org/10.1007/s11269-019-02468-5

    Article  Google Scholar 

  16. Jutz, S., Milagro-Pérez, M.P.: Copernicus: the European Earth Observation programme. Revista de Teledetección 56, V–XI (2020)

    Google Scholar 

  17. Copernicus: Infrastructure overview. https://www.copernicus.eu/en/about-copernicus/infrastructure-overview. Last accessed 1 Apr 2023

  18. Copernicus Climate Change Service. https://climate.copernicus.eu/about-us. Last accessed 31 Apr 2023

  19. Thépaut, J-N., Dee, D., Engelen, R., Pinty, B.: The Copernicus programme and its climate change service. In: IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 1591–1593. IEEE, Valencia, Spain (2018)

    Google Scholar 

  20. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R.: Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017)

    Article  Google Scholar 

  21. Kumar, L., Mutanga, O.: Google Earth Engine applications since inception: usage, trends and potential. Remote Sens. 10, 1509 (2018)

    Article  Google Scholar 

  22. Barletta, C., Capolupo, A., Tarantino, E.: Exploring the potentialities of Landsat 8 and Sentinel-2 satellite data for estimating the land surface albedo in urban areas using GEE platform. In: Gervasi, O., et al. (eds.) International Conference on Computational Science and Its Applications, LNCS, vol. 13379, pp. 435–449. Springer, Cham. (2022)

    Google Scholar 

  23. Capolupo, A., Monterisi, C., Barletta, C., Tarantino, E.: Google Earth Engine for land surface albedo estimation: comparison among different algorithms. In: Proceedings of SPIE, vol. 11856, Remote Sensing for Agriculture, Ecosystems, and Hydrology XXIII, p. 118560F. International Society for Optics and Photonics (2021)

    Google Scholar 

  24. Capolupo, A., Monterisi, C., Saponaro, M., Tarantino, E.: Multi-temporal analysis of landcover changes using Landsat data through Google Earth Engine platform. In: Proceedings of SPIE, vol. 11524, Eighth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2020), p. 1152419. International Society for Optics and Photonics (2020)

    Google Scholar 

  25. Cotecchia, V.: Area idrogeologica dell’arco ionico tarantino. In: Acque sotterranee e l’intrusione marina in Puglia: dalla ricerca all’emergenza nella salvaguardia della risorsa. Memorie descrittive della carta geologica d’Italia 92, pp. 248–312. ISPRA Serv. Geologico d’Italia (2014)

    Google Scholar 

  26. Tropeano, M., Sabato, L., Pieri, P.: Filling and cannibalization of a foredeep: the Bradanic Trough, Southern Italy. Geol. Soc. London, Special Pub. 191, 55–79 (2002)

    Article  Google Scholar 

  27. Cotecchia, V., Simeone, V., Gabriele, S.: Caratteri climatici. In: Acque sotterranee e l’intrusione marina in Puglia: dalla ricerca all’emergenza nella salvaguardia della risorsa. Memorie descrittive della carta geologica d’Italia 92, pp. 338–369. ISPRA Serv. Geologico d’Italia (2014)

    Google Scholar 

  28. Copernicus Land Monitoring Service: https://land.copernicus.eu/. Last accessed 4 Apr 2023

  29. Harris, I., Osborn, T.J., Jones, P., Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020)

    Article  Google Scholar 

  30. Munafò, M., Salvati, L., Zitti, M.: Estimating soil sealing rate at national level – Italy as a case study. Ecol. Ind. 26, 137–140 (2013)

    Article  Google Scholar 

  31. Ballabio, C., Panagos, P., Montanarella, L.: Mapping topsoil physical properties at European scale using the LUCAS database. Geoderma 261, 110–123 (2016)

    Article  Google Scholar 

  32. Panagos, P., et al.: European Soil Data Centre 2.0: soil data and knowledge in support of the EU policies. Eur. J. Soil Sci. 73, e13315 (2022)

    Google Scholar 

  33. Panagos, P., Van Liedekerke, M., Jones, A., Montanarella, L.: European Soil Data Centre: response to European policy support and public data requirements. Land Use Policy 29, 329–338 (2012)

    Article  Google Scholar 

  34. European Commission, Joint Research Centre: European Soil Data Centre (ESDAC). http://esdac.jrc.ec.europa.eu. Last accessed 4 Apr 2023

  35. Celico, P.: Prospezioni idrogeologiche. Liguori Editore, Napoli (1988)

    Google Scholar 

  36. Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., Brisco, B.: Google Earth Engine for geo-big data applications: a meta-analysis and systematic review. ISPRS J. Photogramm. Remote. Sens. 164, 152–170 (2020)

    Article  Google Scholar 

  37. Mutanga, O., Kumar, L.: Google Earth Engine Applications. Remote Sens. 11, 591 (2019)

    Article  Google Scholar 

  38. European Commission – Joint Research Centre: World Atlas of Desertification: patterns of aridity. https://wad.jrc.ec.europa.eu/patternsaridity. Last accessed 8 Apr 2023

  39. Stefanidis, K., Kostara, A., Papastergiadou, E.: Implications of human activities, land use changes and climate variability in Mediterranean lakes of Greece. Water 8, 483 (2016)

    Article  Google Scholar 

  40. United Nations Environmental Programme. World atlas of desertification. Edward Arnold, London, UK (1992)

    Google Scholar 

  41. Eurostat and OCSE: Data collection manual for the OECD/Eurostat joint questionnaire on inland waters and Eurostat regional water questionnaire. Concepts, definitions, current practices, evaluations and recommendations, Version 4 (2018)

    Google Scholar 

  42. European Commission – Joint Research Centre: World Atlas of Desertification: convergence of global change issues. https://wad.jrc.ec.europa.eu/countryreport. Last accessed 8 Apr 2023

  43. NOAA: Drought vs. aridity. https://www.ncei.noaa.gov/access/monitoring/dyk/drought-aridity. Last accessed 8 Apr 2023

  44. European Environment Agency: Wet and dry – aridity. https://www.eea.europa.eu/publications/europes-changing-climate-hazards-1/wet-and-dry-1/wet-and-dry-aridity. Last accessed 8 Apr 2023

  45. European Environment Agency: Wet and dry – drought. https://www.eea.europa.eu/publications/europes-changing-climate-hazards-1/wet-and-dry-1/wet-and-dry-drought. Last accessed 8 Apr 2023

  46. Figorito, B., Tarantino, E., Balacco, G., Fratino, U.: An object-based method for mapping ephemeral river areas from WorldView-2 satellite data. In: Proceedings of SPIE, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIV, vol. 8531, p. 85310B (2012)

    Google Scholar 

  47. Apollonio, C., Balacco, G., Novelli, A., Tarantino, E., Piccinni, A.F.: Land use change impact on flooding areas: the case study of Cervaro Basin (Italy). Sustainability 8, 996 (2016)

    Article  Google Scholar 

  48. IDMP: Drought and water scarcity. WMO No.1284. Global Water Partnership, Stockholm, Sweden and World Meteorological Organization, Geneva, Switzerland (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Capolupo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barletta, C., Capolupo, A., Tarantino, E. (2023). Integration of Copernicus Data and Services to Assess Local Aridity Conditions in the Apulian Context: The Case of Marina di Ginosa. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2023 Workshops. ICCSA 2023. Lecture Notes in Computer Science, vol 14107. Springer, Cham. https://doi.org/10.1007/978-3-031-37114-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-37114-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-37113-4

  • Online ISBN: 978-3-031-37114-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics