Abstract
The concept of extended cloud requires efficient network infrastructure to support ecosystems reaching form the edge to the cloud(s). Standard network load balancing delivers static solutions that are insufficient for the extended clouds, where network loads change often. To address this issue, a genetic algorithm based load optimizer is proposed and implemented. Next, its performance is experimentally evaluated and it is shown that it outperforms other existing solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Research stand IoE. https://zsz.prz.edu.pl/en/research-stand-ioe/about. Accessed: 2023-01-02
SDNGALB source code. https://bolanowski.v.prz.edu.pl/download. Accessed: 2023-01-02
Babayigit, B., Ulu, B.: Load balancing on software defined networks. In: 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), pp. 1–4. IEEE, Ankara (Oct 2018). https://doi.org/10.1109/ISMSIT.2018.8567070
Chen, Y.T., Li, C.Y., Wang, K.: A Fast Converging Mechanism for Load Balancing among SDN Multiple Controllers. In: 2018 IEEE Symposium on Computers and Communications (ISCC), pp. 00682–00687. IEEE, Natal (Jun 2018). https://doi.org/10.1109/ISCC.2018.8538552
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959). https://doi.org/10.1007/BF01386390
Ericsson, M., Resende, M., Pardalos, P.: A Genetic Algorithm for the Weight Setting Problem in OSPF Routing. J. Comb. Optim. 6(3), 299–333 (2002). https://doi.org/10.1023/A:1014852026591
Gao, K., et al.: Predicting traffic demand matrix by considering inter-flow correlations. In: IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 165–170 (2020). https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9163001
Jain, A., Chaudhari, N.S.: Genetic algorithm for optimizing network load balance in MPLS network. In: 2012 Fourth International Conference on Computational Intelligence and Communication Networks, pp. 122–126. IEEE, Mathura, Uttar Pradesh, India (Nov 2012). https://doi.org/10.1109/CICN.2012.119
Jain, P., Sharma, S.K.: A systematic review of nature inspired load balancing algorithm in heterogeneous cloud computing environment. In: 2017 Conference on Information and Communication Technology (CICT), pp. 1–7. IEEE, Gwalior, India (Nov 2017). https://doi.org/10.1109/INFOCOMTECH.2017.8340645
Keskinturk, T., Yildirim, M.B., Barut, M.: An ant colony optimization algorithm for load balancing in parallel machines with sequence-dependent setup times. Comput. Oper. Res. 39(6), 1225–1235 (2012). https://doi.org/10.1016/j.cor.2010.12.003
Li, G., Wang, X., Zhang, Z.: SDN-based load balancing scheme for multi-controller deployment. IEEE Access 7, 39612–39622 (2019). https://doi.org/10.1109/ACCESS.2019.2906683
Mahlab, U., et al.: Entropy-based load-balancing for software-defined elastic optical networks. In: 2017 19th International Conference on Transparent Optical Networks (ICTON), pp. 1–4. IEEE, Girona, Spain (Jul 2017). https://doi.org/10.1109/ICTON.2017.8024847
Mazur, D., Paszkiewicz, A., Bolanowski, M., Budzik, G., Oleksy, M.: Analysis of possible SDN use in the rapid prototyping processas part of the Industry 4.0. Bull. Polish Acad. Sci. Tech. Sci. 67(1), 21–30 (2019). https://doi.org/10.24425/BPAS.2019.127334
Mohiuddin, M.A., Khan, S.A., Engelbrecht, A.P.: Fuzzy particle swarm optimization algorithms for the open shortest path first weight setting problem. Appl. Intell. 45(3), 598–621 (2016). https://doi.org/10.1007/s10489-016-0776-0
Mulyana, E., Killat, U.: An Alternative Genetic Algorithm to Optimize OSPF Weights. Internet Traffic Engineering and Traffic Management, pp. 186–192 (Jul 2002)
Paszkiewicz, A., Bolanowski, M., Budzik, G., Przeszłowski, L., Oleksy, M.: Process of creating an integrated design and manufacturing environment as part of the structure of industry 4.0. Processes 8(9), 1019 (2020). https://doi.org/10.3390/pr8091019
Smiler. S, K.: OpenFlow cookbook. Quick answers to common problems, Packt Publishing, Birmingham Mumbai, 1. publ edn. (2015)
Styan, G.P.: Hadamard products and multivariate statistical analysis. Linear Algebra Appl. 6, 217–240 (1973). https://doi.org/10.1016/0024-3795(73)90023-2
Wang, H., Xu, H., Huang, L., Wang, J., Yang, X.: Load-balancing routing in software defined networks with multiple controllers. Comput. Netw. 141, 82–91 (2018). https://doi.org/10.1016/j.comnet.2018.05.012
Acknowledgements
Work of Marek Bolanowski and Andrzej Paszkiewicz is financed by the Minister of Education and Science of the Republic of Poland within the “Regional Initiative of Excellence” program for years 2019-2023. Project number 027/RID/2018/19, amount granted 11 999 900 PLN. Work of Maria Ganzha and Marcin Paprzycki was funded in part by the European Commission, under the Horizon Europe project ASSIST-IoT, grant number 957258.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bolanowski, M., Gerka, A., Paszkiewicz, A., Ganzha, M., Paprzycki, M. (2023). Application of Genetic Algorithm to Load Balancing in Networks with a Homogeneous Traffic Flow. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14074. Springer, Cham. https://doi.org/10.1007/978-3-031-36021-3_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-36021-3_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36020-6
Online ISBN: 978-3-031-36021-3
eBook Packages: Computer ScienceComputer Science (R0)