Abstract
Calculating the field pattern arising from an array of radiating sources is a central problem in Computational ElectroMagnetics (CEM) and a critical operation for designing and developing antenna systems. Yet, it is a computationally expensive operation when using traditional numerical approaches, including finite-difference in the time and spectral domains. To address this issue, we develop a new data-driven surrogate model for fast and accurate calculation of the field radiation pattern. The method is based on the Fourier Neural Operator (FNO) technique. We show that we achieve a performance improvement of 31x when compared to the performance of the Meep CEM solver when running on a desktop laptop CPU at the cost of a small accuracy loss.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Aguilar, X., Markidis, S.: A deep learning-based particle-in-cell method for plasma simulations. In: 2021 IEEE International Conference on Cluster Computing (CLUSTER), pp. 692–697. IEEE (2021)
Baas, M.: Using Fastai v2 to approximate electric fields for dipole antenna arrays (2020). https://rf5.github.io/2020/01/02/ml-emags1.html
Balanis, C.A.: Advanced engineering electromagnetics. John Wiley & Sons (2012)
Bondeson, A., Rylander, T., Ingelström, P.: Computational electromagnetics. Springer (2012). https://doi.org/10.1007/978-1-4614-5351-2
Kovachki, N., et al.: Neural operator: learning maps between function spaces. arXiv preprint arXiv:2108.08481 (2021)
Li, Z., et al.: Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:2010.08895 (2020)
Markidis, S.: The old and the new: can physics-informed deep-learning replace traditional linear solvers? Front. Big Data 4, 92 (2021)
MEEP - Documentation (2022). https://meep.readthedocs.io/en/latest/FAQ/
Oskooi, A.F., al.: Meep: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181(3), 687–702 (2010)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sadiku, M.N.: Numerical techniques in electromagnetics. CRC Press (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pornthisan, N., Markidis, S. (2023). Fast Electromagnetic Field Pattern Calculation with Fourier Neural Operators. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 14074. Springer, Cham. https://doi.org/10.1007/978-3-031-36021-3_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-36021-3_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-36020-6
Online ISBN: 978-3-031-36021-3
eBook Packages: Computer ScienceComputer Science (R0)