[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Applying Reinforcement Learning to Ramsey Problems

  • Conference paper
  • First Online:
Computational Science – ICCS 2023 (ICCS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 10476))

Included in the following conference series:

  • 689 Accesses

Abstract

The paper presents the use of reinforcement learning in edge coloring of a complete graph, and more specifically in the problem of determining Ramsey numbers. To the best of our knowledge, no one has so far dealt with the use of RL techniques for graph edge coloring.

The paper contains an adaptation of the method of Zhou et al. to the problem of finding specific Ramsey colorings. The proposed algorithm was tested by successfully finding critical colorings for selected known Ramsey numbers. The results of proposed algorithm are so promising that we may have a chance to find unknown Ramsey numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 59.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 74.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brandt, S.: A sufficient condition for all short cycles. Discret. Appl. Math. 79, 63–66 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caccetta, L., Vijayan, K.: Maximal cycles in graphs. Discret. Math. 98, 1–7 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ceberio, J., Mendiburu, A., Lozano, J. A.: The Plackett-Luce ranking model on permutation-based optimization problems. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 494–501. IEEE, Cancun (2013)

    Google Scholar 

  5. Faudree, R.J., Lesniak, L., Schiermeyer, I.: On the circumference of a graph and its complement. Discret. Math. 309, 5891–5893 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Faudree, R.J., Schelp, R.H.: All Ramsey numbers for cycles in graphs. Discret. Math. 8, 313–329 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Frederickson, G., Lynch, N.: Electing a leader in a synchronous ring. J. Assoc. Comput. Mach. 34, 98–115 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Greenwood, R.E., Gleason, A.M.: Combinatorial relations and chromatic graphs. Can. J. Math. 7, 1–7 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  9. McKay, B.D., Radziszowski, S.P.: \(R (4, 5) = 25\). J. Graph Theory 19, 309–322 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Radziszowski, S.: Small Ramsey numbers. Electron. J. Combin. (2021). Dynamic Survey 1, revision 16

    Google Scholar 

  11. Rosta, V.: Ramsey Theory Applications. Electron. J. Combin. (2004). Dynamic Survey 13

    Google Scholar 

  12. Rosta, V.: On a Ramsey type problem of J.A. Bondy and P. Erdoös, I & II. J. Combin. Theory Ser. B 15, 94–120 (1973)

    Google Scholar 

  13. Snir, M.: On parallel searching. SIAM J. Comput. 14, 688–708 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yow, K.S., Luo, S.: Learning-based approaches for graph problems: a survey. https://arxiv.org/abs/2204.01057. Accessed 4 Jan 2022

  15. Zhang, Y., Broersma, H., Chen, Y.: Narrowing down the gap on cycle-star Ramsey numbers. J. Combin. 7(2–3), 481–493 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Zhou, Y., Hao, J.-K., Duval, B.: Reinforcement learning based local search for grouping problems: a case study on graph coloring. Expert Syst. Appl. 64, 412–422 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Dzido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dzido, T. (2023). Applying Reinforcement Learning to Ramsey Problems. In: Mikyška, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2023. ICCS 2023. Lecture Notes in Computer Science, vol 10476. Springer, Cham. https://doi.org/10.1007/978-3-031-36027-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36027-5_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36026-8

  • Online ISBN: 978-3-031-36027-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics