[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Characterization of the Septal Discontinuity in Ex-Vivo Human Hearts Using Diffusion Tensor Imaging: The Potential Structural Determinism Played by Fiber Orientation in Clinical Phenotype of Laminopathy Patients

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2023)

Abstract

A key component of the cardiac conduction system is the atrioventricular (AV) node where the His bundle (HB) divides into the right (RBB) and left (LBB) bundles branches. The RBB is connected to the right ventricle (RV) via the moderator band (MB).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, J.-Y., Hur, M.-S.: Morphological classification of the moderator band and its relationship with the anterior papillary muscle. Anat. Cell Biol. 52(1), 38–42 (2019)

    Article  Google Scholar 

  2. Kosiński, A., et al.: Morphological remarks regarding the structure of conduction system in the right ventricle. Kardiol. Pol. 70, 472–476 (2012)

    Google Scholar 

  3. Barber, M.: Arrhythmias from the right ventricular moderator band: diagnosis and management (2019). Accessed 31 Jan 2023

    Google Scholar 

  4. Haïssaguerre, M., et al.: Role of Purkinje conducting system in triggering of idiopathic ventricular fibrillation. Lancet Lond. Engl. 359(9307), 677–678 (2002)

    Article  Google Scholar 

  5. Israel, C.W., Tribunyan, S., Yen Ho, S., Cabrera, J.A.: Anatomy for right ventricular lead implantation. Herzschrittmachertherapie Elektrophysiol. 33(3), 19–326 (2022)

    Google Scholar 

  6. Kapa, S., Bruce, C.J., Friedman, P.A., Asirvatham, S.J.: Advances in cardiac pacing: beyond the transvenous right ventricular apical lead. Cardiovasc. Ther. 28(6), 369–379 (2010)

    Article  Google Scholar 

  7. Baban, A., et al.: Cardiovascular involvement in pediatric laminopathies. Report of six patients and literature revision. Front. Pediatr. 8 (2020)

    Google Scholar 

  8. Rodríguez-Padilla, J., et al.: Impact of intraventricular septal fiber orientation on cardiac electromechanical function. Am. J. Physiol. Heart Circ. Physiol. 322(6), H936–H952 (2022)

    Article  Google Scholar 

  9. Kocica, M.J., et al.: The helical ventricular myocardial band: global, three-dimensional, functional architecture of the ventricular myocardium. Eur. J. Cardiothorac. Surg. 29, S21–S40 (2006)

    Article  Google Scholar 

  10. MacIver, D.H., et al.: The end of the unique myocardial band: part I. Anatomical considerations. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 53(1), 112–119 (2018)

    Article  Google Scholar 

  11. Fontana, M., et al.: CMR-verified interstitial myocardial fibrosis as a marker of subclinical cardiac involvement in LMNA mutation carriers. JACC Cardiovasc. Imaging 6(1), 124–126 (2013)

    Article  Google Scholar 

  12. Krenning, G., Zeisberg, E.M., Kalluri, R.: The origin of fibroblasts and mechanism of cardiac fibrosis. J. Cell. Physiol. 225(3), 631–637 (2010)

    Article  Google Scholar 

  13. Eijgenraam, T.R., Silljé, H.H.W., de Boer, R.A.: Current understanding of fibrosis in genetic cardiomyopathies. Trends Cardiovasc. Med. 30(6), 353–361 (2020). https://doi.org/10.1016/j.tcm.2019.09.003

    Article  Google Scholar 

  14. Magat, J., et al.: 3D MRI of explanted sheep hearts with submillimeter isotropic spatial resolution: comparison between diffusion tensor and structure tensor imaging. Magn. Reson. Mater. Phys., Biol. Med. 34(5), 741–755 (2021). https://doi.org/10.1007/s10334-021-00913-4

    Article  Google Scholar 

  15. Haliot, K., et al.: A 3D high resolution MRI method for the visualization of cardiac fibro-fatty infiltrations. Sci. Rep. 11(1), Art. no. 1 (2021). https://doi.org/10.1038/s41598-021-85774-6

  16. Wu, Y.-C., Field, A.S., Chung, M.K., Badie, B., Alexander, A.L.: Quantitative analysis of diffusion tensor orientation: Theoretical framework. Magn. Reson. Med. 52(5), 1146–1155 (2004). https://doi.org/10.1002/mrm.20254

    Article  Google Scholar 

  17. Garcia-Canadilla, P., et al.: Myoarchitectural disarray of hypertrophic cardiomyopathy begins pre-birth. J. Anat. 235(5), 962–976 (2019)

    Article  Google Scholar 

  18. Vetter, F.J., Simons, S.B., Mironov, S., Hyatt, C.J., Pertsov, A.M.: Epicardial fiber organization in swine right ventricle and its impact on propagation. Circ. Res. 96(2), 244–251 (2005)

    Article  Google Scholar 

  19. Boettler, P., et al.: New aspects of the ventricular septum and its function: an echocardiographic study. Heart Br. Card. Soc. 91(10), 1343–1348 (2005)

    Article  Google Scholar 

  20. Doste, R., et al.: A rule-based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts. Int. J. Numer. Methods Biomed. Eng. 35(4), e3185 (2019)

    Article  Google Scholar 

  21. Moon, J.C.C., et al.: The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 43(12), 2260–2264 (2004)

    Article  Google Scholar 

  22. Kuribayashi, T., Roberts, W.C.: Myocardial disarray at junction of ventricular septum and left and right ventricular free walls in hypertrophic cardiomyopathy. Am. J. Cardiol. 70(15), 1333–1340 (1992)

    Article  Google Scholar 

  23. Nishimura, T., et al.: Prognostic value of cardiac magnetic resonance septal late gadolinium enhancement patterns for periaortic ventricular tachycardia ablation: heterogeneity of the anteroseptal substrate in nonischemic cardiomyopathy. Heart Rhythm 18(4), 579–588 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

All clinical staff involved in the CADENCE and HARMONICA project are gratefully acknowledged for their valuable contributions. All the clinical staff from the CHU Bordeaux are also acknowledged for their contributions and cooperation on the CMR acquisition.

All figures are available in HD at this link: https://github.com/pcabanis/Figures_article.git.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Cabanis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cabanis, P. et al. (2023). Characterization of the Septal Discontinuity in Ex-Vivo Human Hearts Using Diffusion Tensor Imaging: The Potential Structural Determinism Played by Fiber Orientation in Clinical Phenotype of Laminopathy Patients. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35302-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35301-7

  • Online ISBN: 978-3-031-35302-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics