[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computational Study of Conformational Changes in Intrinsically Disordered Regions During Protein-Protein Complex Formation

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2023)

Abstract

Intrinsically Disordered Regions (IDRs) even though they cannot form a defined three-dimensional structure play a pivotal role in modulating cellular processes and signalling pathways. In the present study, we analyse the conformational changes in IDRs upon complex formation using a non-redundant dataset of binary, X-ray solved 356 protein-protein (P-P) complexes and their corresponding unbound forms. IDRs are prevalent in both unbound and complex proteins and after comparing them in both groups they were categorised into three classes: (a) Disordered-Ordered (D-O), where IDRs present in first group were observed to be ordered in the second group (b) Disordered-Partial Ordered (D-PO), where IDRs present in the first group were found to be partially ordered in the second group and (c) Disordered-Disordered (D-D), where IDRs present in one group remained disordered in the other group. The study of secondary structures of residues in the D-O category reveals that majority of IDRs upon complexation form coils followed by helices and strands. Though majority of residues of IDRs in the D-O class are located at the surface of P-P complexes, we observe a significant number of residues form the interface suggesting that they contribute to the stability of the complexes. Amino acids of IDRs under the D-O category are also involved in polar interactions making hydrogen bonds with other residues as well as water. There are some structured and partially structured regions in the unbound proteins which upon complexation become completely disordered. These findings provide fundamental insights into the underlying principles of molecular recognition by disordered regions in P-P complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babu, M.M.: The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem. Soc. Trans. 44, 1185 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Van Der Lee, R., et al.: Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Oldfield, C.J., Uversky, V.N., Dunker, A.K., Kurgan, L.: Introduction to intrinsically disordered proteins and regions. In: Intrinsically Disordered Proteins: Dynamics, Binding, and Function, pp. 1–34. Elsevier (2019)

    Google Scholar 

  4. Ferrie, J.J., Karr, J.P., Tjian, R., Darzacq, X.: “Structure”-function relationships in eukaryotic transcription factors: the role of intrinsically disordered regions in gene regulation. Mol. Cell 82, 3970–3984 (2022)

    Article  CAS  PubMed  Google Scholar 

  5. Misiura, M.M., Kolomeisky, A.B.: Role of intrinsically disordered regions in acceleration of protein-protein association. J. Phys. Chem. B 124, 20–27 (2020)

    Article  CAS  PubMed  Google Scholar 

  6. DeForte, S., Uversky, V.N.: Order, disorder, and everything in between (2016)

    Google Scholar 

  7. Wright, P.E., Dyson, H.J.: Intrinsically disordered proteins in cellular signalling and regulation (2015)

    Google Scholar 

  8. Trivedi, R., Nagarajaram, H.A.: Intrinsically disordered proteins: an overview (2022)

    Google Scholar 

  9. Uversky, V.N.: Functional roles of transiently and intrinsically disordered regions within proteins. FEBS J. 282(7), 1182–1189 (2015). https://doi.org/10.1111/febs.13202

    Article  CAS  PubMed  Google Scholar 

  10. Bondos, S.E., Dunker, A.K., Uversky, V.N.: Intrinsically disordered proteins play diverse roles in cell signaling (2022)

    Google Scholar 

  11. Fuxreiter, M.: Classifying the binding modes of disordered proteins. Int. J. Mol. Sci. 21, 1–9 (2020)

    Article  Google Scholar 

  12. Olsen, J.G., Teilum, K., Kragelund, B.B.: Behaviour of intrinsically disordered proteins in protein–protein complexes with an emphasis on fuzziness. Cell. Mol. Life Sci. 74(17), 3175–3183 (2017). https://doi.org/10.1007/s00018-017-2560-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morris, O.M., Torpey, J.H., Isaacson, R.L.: Intrinsically disordered proteins: modes of binding with emphasis on disordered domains. Open Biol. 11(10), 210–222 (2021). https://doi.org/10.1098/rsob.210222

    Article  CAS  Google Scholar 

  14. Tompa, P., Fuxreiter, M.: Fuzzy complexes: polymorphism and structural disorder in protein–protein interactions. Trends Biochem. Sci. 33, 2–8 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. Uversky, V.N., Oldfield, C.J., Dunker, A.K.: Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu. Rev. Biophys. 37(1), 215–246 (2008). https://doi.org/10.1146/annurev.biophys.37.032807.125924

    Article  CAS  PubMed  Google Scholar 

  16. Blundell, T.L., Gupta, M.N., Hasnain, S.E.: Intrinsic disorder in proteins: relevance to protein assemblies, drug design and host-pathogen interactions (2020)

    Google Scholar 

  17. Ruan, H., Sun, Q., Zhang, W., Liu, Y., Lai, L.: Targeting intrinsically disordered proteins at the edge of chaos. Drug Discov. Today 24(1), 217–227 (2019). https://doi.org/10.1016/j.drudis.2018.09.017

    Article  CAS  PubMed  Google Scholar 

  18. Metallo, S.J.: Intrinsically disordered proteins are potential drug targets. Curr. Opin. Chem. Biol. 14, 481 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sridhar, A., Orozco, M., Collepardo-Guevara, R.: Protein disorder-to-order transition enhances the nucleosome-binding affinity of H1. Nucleic Acids Res. 48, 5318–5331 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moritsugu, K., Terada, T., Kidera, A.: Disorder-to-order transition of an intrinsically disordered region of sortase revealed by multiscale enhanced sampling. J. Am. Chem. Soc. 134, 7094–7101 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. Ahmad, J., et al.: Disorder-to-order transition in PE–PPE proteins of Mycobacterium tuberculosis augments the pro-pathogen immune response. FEBS Open Biol. 10, 70–85 (2020)

    Article  CAS  Google Scholar 

  22. Nishi, H., Fong, J.H., Chang, C., Teichmann, S.A., Panchenko, A.R.: Regulation of protein-protein binding by coupling between phosphorylation and intrinsic disorder: analysis of human protein complexes. Mol. Biosyst. 9, 1620–1626 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uversky, V.N.: Intrinsically disordered proteins and their “mysterious” (meta)physics (2019)

    Google Scholar 

  24. Seoane, B., Carbone, A.: The complexity of protein interactions unravelled from structural disorder. PLoS Comput. Biol. 17, e1008546 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Quaglia, F., et al.: DisProt in 2022: improved quality and accessibility of protein intrinsic disorder annotation. Nucleic Acids Res. 50, D480–D487 (2022)

    Article  CAS  PubMed  Google Scholar 

  26. Fukuchi, S., et al.: IDEAL: Intrinsically disordered proteins with extensive annotations and literature. Nucleic Acids Res. 40 (2012)

    Google Scholar 

  27. Fukuchi, S., et al.: IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners. Nucleic Acids Res. 42 (2014)

    Google Scholar 

  28. Piovesan, D., et al.: MobiDB: intrinsically disordered proteins in 2021. Nucleic Acids Res. 49, D361–D367 (2021)

    Article  CAS  PubMed  Google Scholar 

  29. Erdos, G., Mátyás, P., Dosztányi, D.: IUPred3: prediction of protein disorder enhanced with unambiguous experimental annotation and visualization of evolutionary conservation. Nucleic Acids Res. 49, W297–W303 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mészáros, B., Erdös, G., Dosztányi, Z.: IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 46, W329–W337 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dosztányi, Z., Mészáros, B., Simon, I.: ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 25, 2745 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jones, D.T., Cozzetto, D.: DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31, 857–863 (2015)

    Article  CAS  PubMed  Google Scholar 

  33. Barik, A., Katuwawala, A., Hanson, J., Paliwal, K., Zhou, Y., Kurgan, L.: DEPICTER: intrinsic disorder and disorder function prediction server. J. Mol. Biol. 432, 3379–3387 (2020)

    Article  CAS  PubMed  Google Scholar 

  34. Berman, H.M., et al.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fu, L., Niu, B., Zhu, Z., Wu, S., Li, W.: CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, W., Godzik, A.: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006)

    Article  CAS  PubMed  Google Scholar 

  37. Brandt, B.W., Heringa, J., Leunissen, J.A.M.: SEQATOMS: a web tool for identifying missing regions in PDB in sequence context. Nucleic Acids Res. 36, W255–W259 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Monzon, A.M., et al.: Experimentally determined long intrinsically disordered protein regions are now abundant in the Protein Data Bank. Int. J. Mol. Sci. 21, 1–13 (2020)

    Article  Google Scholar 

  39. Oldfield, C.J., et al.: Utilization of protein intrinsic disorder knowledge in structural proteomics. Biochim. Biophys. Acta 1834, 487 (2013)

    Article  CAS  PubMed  Google Scholar 

  40. Gall, T.L., Romero, P.R., Cortese, M.S., Uversky, V.N., Dunker, A.K.: Intrinsic disorder in the Protein Data Bank. J. Biomol. Struct. Dyn. 24, 325–341 (2007)

    Article  PubMed  Google Scholar 

  41. Zhang, Y., Stec, B., Godzik, A.: Between order and disorder in protein structures – analysis of “dual personality” fragments in proteins. Structure 15, 1141 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Baruah, A., Rani, P., Biswas, P.: Conformational entropy of intrinsically disordered proteins from amino acid triads. Sci. Rep. 5 (2015)

    Google Scholar 

  43. Ferron, F., Longhi, S., Canard, B., Karlin, D.: A practical overview of protein disorder prediction methods. Proteins Struct. Funct. Bioinform. 65, 1–14 (2006)

    Article  CAS  Google Scholar 

  44. Schrödinger LLC: The PyMOL Molecular Graphics System, Version 2.5 (2015)

    Google Scholar 

  45. Hubbard, S.J., Thornton, J.M.: ‘NACCESS’, Computer Program. Department of Biochemistry and Molecular Biology, University College, London (1993). www.bioinf.manchester.ac.uk/naccess/

  46. Lee, B., Richards, F.M.: The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55(3), 379 (1971). https://doi.org/10.1016/0022-2836(71)90324-X

    Article  CAS  PubMed  Google Scholar 

  47. McDonald, I.K., Thornton, J.M.: Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238, 777–793 (1994)

    Article  CAS  PubMed  Google Scholar 

  48. Jones, D.T.: Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999)

    Article  CAS  PubMed  Google Scholar 

  49. Buchan, D.W.A., Jones, D.T.: The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 47, W402–W407 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Holm, L.: Dali server: structural unification of protein families. Nucleic Acids Res. 50, W210–W215 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abraham, M., et al.: GROMACS 2023.1 Manual (2023)

    Google Scholar 

  52. Abraham, M.J., et al.: GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015)

    Article  Google Scholar 

  53. Robustelli, P., Piana, S., Shaw, D.E.: Developing a molecular dynamics force field for both folded and disordered protein states. Proc. Natl. Acad. Sci. U.S.A. 115, E4758–E4766 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shrestha, U.R., Smith, J.C., Petridis, L.: Full structural ensembles of intrinsically disordered proteins from unbiased molecular dynamics simulations. Commun. Biol. 4(1), 243 (2021). https://doi.org/10.1038/s42003-021-01759-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bienert, S., et al.: The SWISS-MODEL repository – new features and functionality. Nucleic Acids Res. 45, D313–D319 (2017)

    Article  CAS  PubMed  Google Scholar 

  56. Waterhouse, A., et al.: SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Medina‐Pritchard, B., et al.: Structural basis for centromere maintenance by Drosophila CENP‐A chaperone CAL1. EMBO J. 39 (2020)

    Google Scholar 

  58. Nakagawa, N., Sugahara, M., Masui, R., Kato, R., Fukuyama, K., Kuramitsu, S.: Crystal structure of Thermus thermophilus HB8 UvrB protein, a key enzyme of nucleotide excision repair. J. Biochem. 126, 986–990 (1999)

    Article  CAS  PubMed  Google Scholar 

  59. Grinter, R., et al.: FusC, a member of the M16 protease family acquired by bacteria for iron piracy against plants. PLOS Biol. 16(8), e2006026 (2018). https://doi.org/10.1371/journal.pbio.2006026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao, B., Kurgan, L.: Compositional bias of intrinsically disordered proteins and regions and their predictions. Biomolecules 12(7), 888 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Campen, A., Williams, R.M., Brown, C.J., Meng, J., Uversky, V.N., Dunker, A.K.: TOP-IDP-Scale: a new amino acid scale measuring propensity for intrinsic disorder. Protein Pept Lett. 15, 956 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Uversky, V.N.: The intrinsic disorder alphabet: III. Dual personality of serine. Intrins. Disord. Proteins 3(1), e1027032 (2015). https://doi.org/10.1080/21690707.2015.1027032

    Article  Google Scholar 

  63. Cheng, S., Cetinkaya, M., Gräter, F.: How sequence determines elasticity of disordered proteins. Biophys. J. 99, 3863 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Structural and functional analysis of “non-smelly” proteins|Enhanced Reader. Accessed 29 Apr 2023

    Google Scholar 

  65. Ahmed, S.S., et al.: Characterization of intrinsically disordered regions in proteins informed by human genetic diversity. PLOS Comput. Biol. 18(3), e1009911 (2022). https://doi.org/10.1371/journal.pcbi.1009911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vacic, V., et al.: Characterization of molecular recognition features, MoRFs, and their binding partners. J. Proteome Res. 6, 2351–2366 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huang, O.W., et al.: Phosphorylation-dependent activity of the deubiquitinase DUBA. Nat. Struct. Mol. Biol. 19(2), 171–175 (2012)

    Article  CAS  PubMed  Google Scholar 

  68. Vance, N.R., Gakhar, L., Spies, M.A.: Allosteric tuning of caspase-7: a fragment-based drug discovery approach. Angew. Chem. Int. Ed. Engl. 56, 14443 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Abhari, B.A., Davoodi, J.: A mechanistic insight into SMAC peptide interference with XIAP-Bir2 inhibition of executioner caspases. J. Mol. Biol. 381, 645–654 (2008)

    Article  CAS  PubMed  Google Scholar 

  70. Aier, I., Varadwaj, P.K., Raj, U.: Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Sci. Rep. 6(1), 1–10 (2016)

    Article  Google Scholar 

  71. Martínez, L.: Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One 10(3), e0119264 (2015). https://doi.org/10.1371/journal.pone.0119264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sneha, P., Priya Doss, C.G.: Molecular dynamics: new frontier in personalized medicine. Adv. Protein Chem. Struct. Biol. 102, 181–224 (2016)

    Article  CAS  PubMed  Google Scholar 

  73. Funari, R., Bhalla, N., Gentile, L.: Measuring the radius of gyration and intrinsic flexibility of viral proteins in buffer solution using small-angle X-ray scattering. ACS Meas. Sci. Au 2, 547–552 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990). https://doi.org/10.1016/S0022-2836(05)80360-2

Download references

Acknowlegements

A.B. acknowledges the support from SERB, DST, India for SRG. M.M.K. is a recipient of GATE research fellowship from MHRD, India. P.B. is a recipient of junior research fellowship from NIT Durgapur, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita Barik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kar, M.M., Bhargava, P., Barik, A. (2023). Computational Study of Conformational Changes in Intrinsically Disordered Regions During Protein-Protein Complex Formation. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13919. Springer, Cham. https://doi.org/10.1007/978-3-031-34953-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34953-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34952-2

  • Online ISBN: 978-3-031-34953-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics