Abstract
Agri-environment schemes (AES) are government-funded voluntary programs that incentivise farmers and land managers for environmental friendly farming practices. Understanding farmers’ decision-making process and its impact on AES adoption can aid policy makers in designing AES schemes that meet adoption goals and environmental targets. Farmers’ decision-making is complex and involves a range of social, behavioural, economic and ecological factors. In this paper, we present a spatially explicit agent-based model (ABM)—BESTMAP-ABM-UK that simulates farmers’ decision-making process, inclusive of farmers’ social, behavioural and economic factors, on adopting buffer strips, cover crops, grassland management and arable land conversion to grassland schemes in the UK. The model produces farmers’ AES adoption under varied AES scheme designs in term of the contract length, the offered payment level, the bureaucracy level and the required minimal area. We apply the Morris screening method to analyse the importance of the model parameters in a status quo scenario, in which current UK AES designs are used. The results show that the average accepted payments of farmers for buffer strips and grassland management and farmers’ intrinsic openness to buffer strips have the most significant impact on the farm adoption rate in the model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Uthes, S., Matzdorf, B.: Studies on agri-environmental measures: a survey of the literature. Environ. Manage. 51, 251–266 (2013). https://doi.org/10.1007/s00267-012-9959-6
Lastra-Bravo, X.B., Hubbard, C., Garrod, G., Tolón-Becerra, A.: What drives farmers’ participation in EU agri-environmental schemes?: results from a qualitative meta-analysis. Environ. Sci. Policy 54, 1–9 (2015). https://doi.org/10.1016/j.envsci.2015.06.002
Pavlis, E.S., Terkenli, T.S., Kristensen, S.B.P., Busck, A.G., Cosor, G.L.: Patterns of agri-environmental scheme participation in Europe: indicative trends from selected case studies. Land Use Policy 57, 800–812 (2016). https://doi.org/10.1016/j.landusepol.2015.09.024
Wilson, G.A., Hart, K.: Financial imperative or conservation concern? EU farmers’ motivations for participation in voluntary agri-environmental schemes. Environ. Plan. A 32, 2161–2185 (2000). https://doi.org/10.1068/a3311
Zimmermann, A., Britz, W.: European farms’ participation in agri-environmental measures. Land Use Policy 50, 214–228 (2016). https://doi.org/10.1016/j.landusepol.2015.09.019
Siebert, R., Toogood, M., Knierim, A.: Factors affecting European farmers’ participation in biodiversity policies. Sociol. Ruralis 46, 318–340 (2006). https://doi.org/10.1111/j.1467-9523.2006.00420.x
Ruto, E., Garrod, G.: Investigating farmers’ preferences for the design of agri-environment schemes: a choice experiment approach. J. Environ. Plan. Manag. 52, 631–647 (2009). https://doi.org/10.1080/09640560902958172
Hynes, S., Garvey, E.: Modelling farmers’ participation in an agri-environmental scheme using panel data: an application to the rural environment protection scheme in Ireland. J. Agric. Econ. 60, 546–562 (2009). https://doi.org/10.1111/j.1477-9552.2009.00210.x
Tyllianakis, E., Martin-Ortega, J.: Agri-environmental schemes for biodiversity and environmental protection: how we are not yet “hitting the right keys.” Land Use Policy 109, 105620 (2021). https://doi.org/10.1016/J.LANDUSEPOL.2021.105620
Coyne, L., Kendall, H., Hansda, R., Reed, M.S., Williams, D.J.L.: Identifying economic and societal drivers of engagement in agri-environmental schemes for English dairy producers. Land Use Policy 101, 105174 (2021). https://doi.org/10.1016/J.LANDUSEPOL.2020.105174
Defrancesco, E., Gatto, P., Mozzato, D.: To leave or not to leave? Understanding determinants of farmers’ choices to remain in or abandon agri-environmental schemes. Land Use Policy 76, 460–470 (2018). https://doi.org/10.1016/j.landusepol.2018.02.026
Espinosa-Goded, M., Barreiro-Hurlé, J., Ruto, E.: What do farmers want from agri-environmental scheme design? A choice experiment approach. J. Agric. Econ. 61, 259–273 (2010). https://doi.org/10.1111/J.1477-9552.2010.00244.X
Capitanio, F., Adinolfi, F., Malorgio, G.: What explains farmers’ participation in rural development policy in Italian southern region? An empirical analysis. New Medit. 10, 19–24 (2011)
Mazorra, A.P.: Agri-environmental policy in Spain. The agenda of socio-political developments at the national, regional and local levels. J. Rural Stud. 17, 81–97 (2001). https://doi.org/10.1016/S0743-0167(00)00028-0
Peerlings, J., Polman, N.: Farm choice between agri-environmental contracts in the European Union. J. Environ. Plan. Manag. 52, 593–612 (2009). https://doi.org/10.1080/09640560902958131
Mora-herrera, D.Y., Huerta-barrientos, A.: A review of agent-based modeling for simulation of agricultural Una revisión de modelación basada en agentes para la simulación de sistemas agropecuarios. 88, 103–110 (2021)
Schreinemachers, P., Berger, T.: An agent-based simulation model of human-environment interactions in agricultural systems. Environ. Model. Softw. 26, 845–859 (2011). https://doi.org/10.1016/j.envsoft.2011.02.004
Brady, M., Sahrbacher, C., Kellermann, K., Happe, K.: An agent-based approach to modeling impacts of agricultural policy on land use, biodiversity and ecosystem services. Landsc. Ecol. 27, 1363–1381 (2012). https://doi.org/10.1007/s10980-012-9787-3
Swinscoe, T.H.A., Knoeri, C., Fleskens, L., Barrett, J.: Agent-based modelling of agricultural water abstraction in response to climate change and policies: In East Anglia, UK (2014)
Matthews, R.B., Gilbert, N.G., Roach, A., Polhill, J.G., Gotts, N.M.: Agent-based land-use models: a review of applications. Landsc. Ecol. 22, 1447–1459 (2007). https://doi.org/10.1007/s10980-007-9135-1
Kremmydas, D., Athanasiadis, I.N., Rozakis, S.: A review of agent based modeling for agricultural policy evaluation. Agric. Syst. 164, 95–106 (2018). https://doi.org/10.1016/j.agsy.2018.03.010
Louhichi, K., Espinosa, M., Ciaian, P., Perni, A., Vosough Ahmadi, B., Colen, L., Gomez y Paloma, S.: The EU-wide individual farm model for common agricultural policy analysis (IFM-CAP v. 1). Economic impacts of CAP greening https://doi.org/10.2760/218047 (2018)
Huber, R., Bakker, M., Balmann, A., Berger, T., Bithell, M., Brown, C., Grêt-Regamey, A., Xiong, H., Le, Q.B., Mack, G., Meyfroidt, P., Millington, J., Müller, B., Polhill, J.G., Sun, Z., Seidl, R., Troost, C., Finger, R.: Representation of decision-making in European agricultural agent-based models. https://doi.org/10.1016/j.agsy.2018.09.007 (2018)
Ziv, G., Beckmann, M., Bullock, J., Cord, A., Delzeit, R., Domingo, C., Dreßler, G., Hagemann, N., Masó, J., Müller, B., Neteler, M., Sapundzhieva, A., Stoev, P., Stenning, J., Trajković, M., Václavík, T.: BESTMAP: behavioural, ecological and socio-economic tools for modelling agricultural policy. Res. Ideas Outcomes. 6, 1–48 (2020). https://doi.org/10.3897/rio.6.e52052
Wittstock, F., Hötten, D., Biffi, S., Domingo-marimon, C., Bořivoj Šarapatka, M.B., Mesaroš, M.: Summaries of data, obstacles and challenges from interview campaigns (2020)
Grutters, J.P.C., Kessels, A.G.H., Dirksen, C.D., Van Helvoort-Postulart, D., Anteunis, L.J.C., Joore, M.A.: Willingness to accept versus willingness to pay in a discrete choice experiment. Value Health 11, 1110–1119 (2008). https://doi.org/10.1111/j.1524-4733.2008.00340.x
Wilensky, U.: NetLogo. Northweste (1999)
Salecker, J., Sciaini, M., Meyer, K.M., Wiegand, K.: The nlrx r package: a next-generation framework for reproducible NetLogo model analyses (2019). https://doi.org/10.1111/2041-210X.13286
Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33, 161–174 (1991). https://doi.org/10.1177/001872086700900503
Campolongo, F., Cariboni, J., Saltelli, A.: An effective screening design for sensitivity analysis of large models. Environ. Model. Softw. 22, 1509–1518 (2007). https://doi.org/10.1016/j.envsoft.2006.10.004
Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models (Google eBook) (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, C. et al. (2023). An Agent-Based Model of UK Farmers’ Decision-Making on Adoption of Agri-environment Schemes. In: Squazzoni, F. (eds) Advances in Social Simulation. ESSA 2022. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-031-34920-1_37
Download citation
DOI: https://doi.org/10.1007/978-3-031-34920-1_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34919-5
Online ISBN: 978-3-031-34920-1
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)