[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Building Blocks for LSTM Homomorphic Evaluation with TFHE

  • Conference paper
  • First Online:
Cyber Security, Cryptology, and Machine Learning (CSCML 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13914))

Abstract

Long Short-Term Memory (LSTM) is a Neural Network (NN) type that creates temporal connections between its nodes. It models sequence data for applications such as speech recognition, image captioning, DNA sequence analysis, and sentence translation. Applications that are often subject to privacy constraints. This paper thus presents basic building blocks for the homomorphic execution of an LSTM that would respect the privacy of its inputs. By means of TFHE functional bootstrapping, we propose several approaches for homomorphically evaluating discretized flavors of the Sigmoid and Tanh activation functions. Experimental results show that the accuracy of the resulting discretized networks remains comparable to a full precision clear-domain execution. Performance-wise, we are able to homomorphically compute a Sigmoid or Tanh function in 0.3 or 0.15 s (depending on whether or not multivalue bootstrapping is relied on). This paves the way towards evaluating practical LSTMs over encrypted inputs in around 1 to 3 min which is competitive with the state of the art.

This work was supported by the France 2030 ANR Project ANR-22-PECY-003 SecureCompute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that, in principle, floating point functions can be performed by means of homomorphic computations (e.g. by running their boolean circuit representations over an FHE with \(\mathbb {Z}_2\) as plain domain). In practice, however, such an approach induces prohibitive computational costs.

  2. 2.

    GRU units are a simple version of LSTM ones. They also rely on Tanh and Sigmoid for computing memory cells and activations. However, they cannot manage very long dependencies.

  3. 3.

    https://tfhe.github.io/tfhe/.

  4. 4.

    https://tfhe.github.io/tfhe/ (v1.0.1-36-gbc71bfa).

References

  1. Aharoni, E., et al.: Tile tensors: a versatile data structure with descriptive shapes for homomorphic encryption. CoRR abs/2011.01805 (2020). arXiv:2011.01805

  2. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of deep discretized neural networks. Technical Report Report 2017/1114, IACR Cryptology ePrint Archive (2017). https://hal.science/hal-01665330

  3. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology - CRYPTO 2012, pp. 868–886. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-32009-5_50

    Chapter  Google Scholar 

  4. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 309–325. ITCS ’12, Association for Computing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2090236.2090262

  5. Carpov, S., Izabachène, M., Mollimard, V.: New techniques for multi-value input homomorphic evaluation and applications. Cryptology ePrint Archive, Paper 2018/622 (2018). https://eprint.iacr.org/2018/622

  6. Chabanne, H., Lescuyer, R., Milgram, J., Morel, C., Prouff, E.: Recognition over encrypted faces: 4th International Conference, MSPN 2018, Paris (2019)

    Google Scholar 

  7. Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-preserving classification on deep neural network. Cryptology ePrint Archive, Report 2017/035 (2017)

    Google Scholar 

  8. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers (2017)

    Google Scholar 

  9. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption library (2016). https://tfhe.github.io/tfhe/

  10. Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient homomorphic inference of deep neural networks. Cryptology ePrint Archive, Paper 2021/091 (2021). https://doi.org/10.1007/978-3-030-78086-91, https://eprint.iacr.org/2021/091

  11. Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient homomorphic inference of deep neural networks. In: Dolev, S., Margalit, O., Pinkas, B., Schwarzmann, A. (eds.) Cyber Security Cryptography and Machine Learning, pp. 1–19. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-78086-9_1

    Chapter  Google Scholar 

  12. Chillotti, I., Ligier, D., Orfila, J.B., Tap, S.: Improved programmable bootstrapping with larger precision and efficient arithmetic circuits for TFHE. Cryptology ePrint Archive, Report 2021/729 (2021), https://ia.cr/2021/729

  13. Clet, P.E., Zuber, M., Boudguiga, A., Sirdey, R., Gouy-Pailler, C.: Putting up the swiss army knife of homomorphic calculations by means of tfhe functional bootstrapping. Cryptology ePrint Archive, Paper 2022/149 (2022). https://eprint.iacr.org/2022/149

  14. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: Cryptonets: applying neural networks to encrypted data with high throughput and accuracy (2016), https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/

  15. Dua, M., Yadav, R., Mamgai, D., Brodiya, S.: An improved RNN-LSTM based novel approach for sheet music generation (2020). https://doi.org/10.1016/j.procs.2020.04.049

  16. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144 (2012). https://ia.cr/2012/144

  17. Guimarães, A., Borin, E., Aranha, D.F.: Revisiting the functional bootstrap in TFHE. IACR Transactions on Cryptographic Hardware and Embedded Systems 2021(2), 229–253 (2021). 10.46586/tches.v2021.i2.229-253

    Google Scholar 

  18. Hochreiter, Jurgen, S.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997)

    Google Scholar 

  19. Izabachène, M., Sirdey, R., Zuber, M.: Practical fully homomorphic encryption for fully masked neural networks. In: Mu, Y., Deng, R.H., Huang, X. (eds.) Cryptology and Network Security, pp. 24–36. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-31578-8_2

    Chapter  Google Scholar 

  20. Jang, J., et al.: Privacy-preserving deep sequential model with matrix homomorphic encryption. In: Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security, pp. 377–391. ASIA CCS ’22, Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3488932.3523253

  21. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic regression based on homomorphic encryption: design and evaluation. In: JMIR Medical Informatics (2018)

    Google Scholar 

  22. Kluczniak, K., Schild, L.: FDFB: full domain functional bootstrapping towards practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2021/1135 (2021). https://ia.cr/2021/1135

  23. Lev, G., Sadeh, G., Klein, B., Wolf, L.: RNN fisher vectors for action recognition and image annotation (2015)

    Google Scholar 

  24. Madi, A., Sirdey, R., Stan, O.: Computing neural networks with homomorphic encryption and verifiable computing. In: ACNS Workshops (2020)

    Google Scholar 

  25. OPenAI: Chatgpt: optimizing language models for dialogue (2022). https://openai.com/blog/chatgpt/

  26. Paul, J., Annamalai, M.S.M.S., Ming, W., Badawi, A.A., Veeravalli, B., Aung, K.M.M.: Privacy-preserving collective learning with homomorphic encryption. IEEE Access 9, 132084–132096 (2021). https://doi.org/10.1109/ACCESS.2021.3114581

    Article  Google Scholar 

  27. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv:2204.06125

  28. Syed, S.A., Rashid, M., Hussain, S., Zahid, H.: Comparative analysis of CNN and RNN for voice pathology detection. BioMed Research International 2021 (2021)

    Google Scholar 

  29. Woodbridge, J., Anderson, H.S., Ahuja, A., Grant, D.: Predicting domain genreation algorithms with long short-term memory networks (2016)

    Google Scholar 

  30. Yang, Z., Xie, X., Shen, H., Chen, S., Zhou, J.: Tota: fully homomorphic encryption with smaller parameters and stronger security. Cryptology ePrint Archive, Report 2021/1347 (2021). https://ia.cr/2021/1347

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daphné Trama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trama, D., Clet, PE., Boudguiga, A., Sirdey, R. (2023). Building Blocks for LSTM Homomorphic Evaluation with TFHE. In: Dolev, S., Gudes, E., Paillier, P. (eds) Cyber Security, Cryptology, and Machine Learning. CSCML 2023. Lecture Notes in Computer Science, vol 13914. Springer, Cham. https://doi.org/10.1007/978-3-031-34671-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34671-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34670-5

  • Online ISBN: 978-3-031-34671-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics