[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cyber-Attack Detection Through Ensemble-Based Machine Learning Classifier

  • Conference paper
  • First Online:
Machine Intelligence and Emerging Technologies (MIET 2022)

Abstract

In this fourth industrial revolution era, cyber-attacks are constantly increasing. A method called network traffic monitoring blueprint has been used to detect these unusual suspicious activities in the system. Fuzzers, Backdoors, DoS, Exploits, Reconnaissance, Shellcode, Worm, etc., are known as attacks that disrupt the functioning of a system. This paper explores the performance of various machine learning (ML) algorithms and develops an ensemble-based model to detect cyber-attacks. We first implement eight different machine learning models such as Support Vector Machine (SVM), Extreme Gradient Boosting (XGB), Logistic Regression (LR), K-Nearest Neighbor (KNN), Decision Tree (DT), AdaBoosting, Random Forest (RF), Naive Bayes by using network intrusion dataset named UNSW-NB15 containing multi-type data. Based on the performance of indiviaul machine learning models, we construct an ensemble model by taking into account the top four machine learning models. We also take into account a set of optimal features while building our ensemble model. The experimental outcomes demonstrate that our presented ensemble model produces good accuracy of 98.48% while detecting diverse attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sarker, I.H.: Smart city data science: Towards data-driven smart cities with open research issues. Internet of Things 19, 100528 (2022)

    Article  Google Scholar 

  2. McHugh, J., Christie, A., Allen, J.: Defending yourself: The role of intrusion detection systems. IEEE Softw. 17(5), 42–51 (2000)

    Article  Google Scholar 

  3. Krügel, C., Toth, T., Kirda, E.: Service specific anomaly detection for network intrusion detection. In: Proceedings of the 2002 ACM symposium on Applied computing, pp. 201–208 (March 2002)

    Google Scholar 

  4. Fan, W., Bouguila, N., Ziou, D.: Unsupervised anomaly intrusion detection via localized bayesian feature selection. In: 2011 IEEE 11th International Conference on Data Mining, pp. 1032–1037. IEEE (December 2011)

    Google Scholar 

  5. Sarker, I.H.: Machine learning for intelligent data analysis and automation in cybersecurity: current and future prospects. Annal. Data Sci., 1–26 (2022)

    Google Scholar 

  6. Moustafa, N., Slay, J.: A network forensic scheme using correntropy-variation for attack detection. In: DigitalForensics 2018. IAICT, vol. 532, pp. 225–239. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99277-8_13

    Chapter  Google Scholar 

  7. Sarker, I.H.: Cyberlearning: effectiveness analysis of machine learning security modeling to detect cyber-anomalies and multi-attacks. Internet of Things 14, 100393 (2021)

    Article  Google Scholar 

  8. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: 2015 Military Communications And Information Systems Conference (MilCIS), pp. 1–6. IEEE (November 2015)

    Google Scholar 

  9. Shon, T., Moon, J.: A hybrid machine learning approach to network anomaly detection. Inf. Sci. 177(18), 3799–3821 (2007)

    Article  Google Scholar 

  10. Mokhtari, S., Abbaspour, A., Yen, K.K., Sargolzaei, A.: A machine learning approach for anomaly detection in industrial control systems based on measurement data. Electronics 10(4), 407 (2021)

    Article  Google Scholar 

  11. Moustafa, N., Creech, G., Slay, J.: Anomaly detection system using beta mixture models and outlier detection. In: Pattnaik, P.K., Rautaray, S.S., Das, H., Nayak, J. (eds.) Progress in Computing, Analytics and Networking. AISC, vol. 710, pp. 125–135. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7871-2_13

    Chapter  Google Scholar 

  12. Hasan, M., Islam, M.M., Zarif, M.I.I., Hashem, M.M.A.: Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches. Internet of Things 7, 100059 (2019)

    Article  Google Scholar 

  13. Nath, M. D., Bhattasali, T.: Anomaly Detection Using Machine Learning Approaches

    Google Scholar 

  14. Elmrabit, N., Zhou, F., Li, F., Zhou, H.: Evaluation of machine learning algorithms for anomaly detection. In: 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), pp. 1–8. IEEE (June 2020)

    Google Scholar 

  15. Panda, M., Patra, M.R.: Network intrusion detection using naive bayes. International J. Comput. Sci. Netw. Sec. 7(12), 258–263 (2007)

    Google Scholar 

  16. Puttini, R.S., Marrakchi, Z., Mé, L.: A bayesian classification model for real-time intrusion detection. In: AIP Conference Proceedings, vol. 659(1), 150–162. American Institute of Physics (March 2003)

    Google Scholar 

  17. Al-Zewairi, M., Almajali, S., Awajan, A.: Experimental evaluation of a multi-layer feed-forward artificial neural network classifier for network intrusion detection system. In: 2017 International Conference on New Trends in Computing Sciences (ICTCS), pp. 167–172. IEEE (October 2017)

    Google Scholar 

  18. Baig, M.M., Awais, M.M., El-Alfy, E.S.M.: A multiclass cascade of artificial neural network for network intrusion detection. J. Intell. Fuzzy Syst. 32(4), 2875–2883 (2017)

    Article  Google Scholar 

  19. Zhang, Z., Li, J., Manikopoulos, C.N., Jorgenson, J., Ucles, J.: HIDE: a hierarchical network intrusion detection system using statistical preprocessing and neural network classification. In: Proceedings of IEEE Workshop on Information Assurance and Securitym, vol. 85, p. 90 (June 2001)

    Google Scholar 

  20. Chang, R.I., Lai, L.B., Su, W.D., Wang, J.C., Kouh, J.S.: Intrusion detection by backpropagation neural networks with sample-query and attribute-query. Int. J. Comput. Intell. Res. 3(1), 6–10 (2007)

    Google Scholar 

  21. Sarker, I.H., Khan, A.I., Abushark, Y.B., Alsolami, F.: Internet of things (iot) security intelligence: a comprehensive overview, machine learning solutions and research directions. Mobile Netw. Appli., 1–17 (2022)

    Google Scholar 

  22. Fan, C., Chen, M., Wang, X., Wang, J., Huang, B.: A review on data preprocessing techniques toward efficient and reliable knowledge discovery from building operational data. Front. Energy Res. 9, 652801 (2021)

    Article  Google Scholar 

  23. Miao, J., Niu, L.: A survey on feature selection. Proc. Comput. Sci. 91, 919–926 (2016)

    Article  Google Scholar 

  24. Rana, R., Singhal, R.: Chi-square test and its application in hypothesis testing. J. Pract. Cardiovas. Sci. 1(1), 69 (2015)

    Article  Google Scholar 

  25. Wang, L., (ed.). Support vector machines: theory and applications, vol. 177. Springer Science & Business Media (2005). https://doi.org/10.1007/b95439

  26. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (August 2016)

    Google Scholar 

  27. Uyanık, G.K., Güler, N.: A study on multiple linear regression analysis. Procedia. Soc. Behav. Sci. 106, 234–240 (2013)

    Article  Google Scholar 

  28. Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: KNN model-based approach in classification. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) OTM 2003. LNCS, vol. 2888, pp. 986–996. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39964-3_62

    Chapter  Google Scholar 

  29. Charbuty, B., Abdulazeez, A.: Classification based on decision tree algorithm for machine learning. J. Appli. Sci. Technol. Trends 2(01), 20–28 (2021)

    Article  Google Scholar 

  30. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  31. Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. J. Japanese Soc. Artifi. Intell. 14(771–780), 1612 (1999)

    Google Scholar 

  32. Rish, I.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3(22), pp. 41–46 (August 2001)

    Google Scholar 

  33. Zhang, Y., Zhang, H., Cai, J., Yang, B.: A weighted voting classifier based on differential evolution. In: Abstract and Applied Analysis, vol. 2014, Hindawi (May 2014)

    Google Scholar 

  34. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31865-1_25

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Amaz Uddin or Iqbal H. Sarker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uddin, M.A., Shahriar, K.T., Haque, M.M., Sarker, I.H. (2023). Cyber-Attack Detection Through Ensemble-Based Machine Learning Classifier. In: Satu, M.S., Moni, M.A., Kaiser, M.S., Arefin, M.S. (eds) Machine Intelligence and Emerging Technologies. MIET 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 491. Springer, Cham. https://doi.org/10.1007/978-3-031-34622-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34622-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34621-7

  • Online ISBN: 978-3-031-34622-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics