Abstract
In this fourth industrial revolution era, cyber-attacks are constantly increasing. A method called network traffic monitoring blueprint has been used to detect these unusual suspicious activities in the system. Fuzzers, Backdoors, DoS, Exploits, Reconnaissance, Shellcode, Worm, etc., are known as attacks that disrupt the functioning of a system. This paper explores the performance of various machine learning (ML) algorithms and develops an ensemble-based model to detect cyber-attacks. We first implement eight different machine learning models such as Support Vector Machine (SVM), Extreme Gradient Boosting (XGB), Logistic Regression (LR), K-Nearest Neighbor (KNN), Decision Tree (DT), AdaBoosting, Random Forest (RF), Naive Bayes by using network intrusion dataset named UNSW-NB15 containing multi-type data. Based on the performance of indiviaul machine learning models, we construct an ensemble model by taking into account the top four machine learning models. We also take into account a set of optimal features while building our ensemble model. The experimental outcomes demonstrate that our presented ensemble model produces good accuracy of 98.48% while detecting diverse attacks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sarker, I.H.: Smart city data science: Towards data-driven smart cities with open research issues. Internet of Things 19, 100528 (2022)
McHugh, J., Christie, A., Allen, J.: Defending yourself: The role of intrusion detection systems. IEEE Softw. 17(5), 42–51 (2000)
Krügel, C., Toth, T., Kirda, E.: Service specific anomaly detection for network intrusion detection. In: Proceedings of the 2002 ACM symposium on Applied computing, pp. 201–208 (March 2002)
Fan, W., Bouguila, N., Ziou, D.: Unsupervised anomaly intrusion detection via localized bayesian feature selection. In: 2011 IEEE 11th International Conference on Data Mining, pp. 1032–1037. IEEE (December 2011)
Sarker, I.H.: Machine learning for intelligent data analysis and automation in cybersecurity: current and future prospects. Annal. Data Sci., 1–26 (2022)
Moustafa, N., Slay, J.: A network forensic scheme using correntropy-variation for attack detection. In: DigitalForensics 2018. IAICT, vol. 532, pp. 225–239. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99277-8_13
Sarker, I.H.: Cyberlearning: effectiveness analysis of machine learning security modeling to detect cyber-anomalies and multi-attacks. Internet of Things 14, 100393 (2021)
Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: 2015 Military Communications And Information Systems Conference (MilCIS), pp. 1–6. IEEE (November 2015)
Shon, T., Moon, J.: A hybrid machine learning approach to network anomaly detection. Inf. Sci. 177(18), 3799–3821 (2007)
Mokhtari, S., Abbaspour, A., Yen, K.K., Sargolzaei, A.: A machine learning approach for anomaly detection in industrial control systems based on measurement data. Electronics 10(4), 407 (2021)
Moustafa, N., Creech, G., Slay, J.: Anomaly detection system using beta mixture models and outlier detection. In: Pattnaik, P.K., Rautaray, S.S., Das, H., Nayak, J. (eds.) Progress in Computing, Analytics and Networking. AISC, vol. 710, pp. 125–135. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7871-2_13
Hasan, M., Islam, M.M., Zarif, M.I.I., Hashem, M.M.A.: Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches. Internet of Things 7, 100059 (2019)
Nath, M. D., Bhattasali, T.: Anomaly Detection Using Machine Learning Approaches
Elmrabit, N., Zhou, F., Li, F., Zhou, H.: Evaluation of machine learning algorithms for anomaly detection. In: 2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), pp. 1–8. IEEE (June 2020)
Panda, M., Patra, M.R.: Network intrusion detection using naive bayes. International J. Comput. Sci. Netw. Sec. 7(12), 258–263 (2007)
Puttini, R.S., Marrakchi, Z., Mé, L.: A bayesian classification model for real-time intrusion detection. In: AIP Conference Proceedings, vol. 659(1), 150–162. American Institute of Physics (March 2003)
Al-Zewairi, M., Almajali, S., Awajan, A.: Experimental evaluation of a multi-layer feed-forward artificial neural network classifier for network intrusion detection system. In: 2017 International Conference on New Trends in Computing Sciences (ICTCS), pp. 167–172. IEEE (October 2017)
Baig, M.M., Awais, M.M., El-Alfy, E.S.M.: A multiclass cascade of artificial neural network for network intrusion detection. J. Intell. Fuzzy Syst. 32(4), 2875–2883 (2017)
Zhang, Z., Li, J., Manikopoulos, C.N., Jorgenson, J., Ucles, J.: HIDE: a hierarchical network intrusion detection system using statistical preprocessing and neural network classification. In: Proceedings of IEEE Workshop on Information Assurance and Securitym, vol. 85, p. 90 (June 2001)
Chang, R.I., Lai, L.B., Su, W.D., Wang, J.C., Kouh, J.S.: Intrusion detection by backpropagation neural networks with sample-query and attribute-query. Int. J. Comput. Intell. Res. 3(1), 6–10 (2007)
Sarker, I.H., Khan, A.I., Abushark, Y.B., Alsolami, F.: Internet of things (iot) security intelligence: a comprehensive overview, machine learning solutions and research directions. Mobile Netw. Appli., 1–17 (2022)
Fan, C., Chen, M., Wang, X., Wang, J., Huang, B.: A review on data preprocessing techniques toward efficient and reliable knowledge discovery from building operational data. Front. Energy Res. 9, 652801 (2021)
Miao, J., Niu, L.: A survey on feature selection. Proc. Comput. Sci. 91, 919–926 (2016)
Rana, R., Singhal, R.: Chi-square test and its application in hypothesis testing. J. Pract. Cardiovas. Sci. 1(1), 69 (2015)
Wang, L., (ed.). Support vector machines: theory and applications, vol. 177. Springer Science & Business Media (2005). https://doi.org/10.1007/b95439
Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (August 2016)
Uyanık, G.K., Güler, N.: A study on multiple linear regression analysis. Procedia. Soc. Behav. Sci. 106, 234–240 (2013)
Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: KNN model-based approach in classification. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) OTM 2003. LNCS, vol. 2888, pp. 986–996. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39964-3_62
Charbuty, B., Abdulazeez, A.: Classification based on decision tree algorithm for machine learning. J. Appli. Sci. Technol. Trends 2(01), 20–28 (2021)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. J. Japanese Soc. Artifi. Intell. 14(771–780), 1612 (1999)
Rish, I.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3(22), pp. 41–46 (August 2001)
Zhang, Y., Zhang, H., Cai, J., Yang, B.: A weighted voting classifier based on differential evolution. In: Abstract and Applied Analysis, vol. 2014, Hindawi (May 2014)
Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31865-1_25
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Uddin, M.A., Shahriar, K.T., Haque, M.M., Sarker, I.H. (2023). Cyber-Attack Detection Through Ensemble-Based Machine Learning Classifier. In: Satu, M.S., Moni, M.A., Kaiser, M.S., Arefin, M.S. (eds) Machine Intelligence and Emerging Technologies. MIET 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 491. Springer, Cham. https://doi.org/10.1007/978-3-031-34622-4_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-34622-4_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34621-7
Online ISBN: 978-3-031-34622-4
eBook Packages: Computer ScienceComputer Science (R0)