[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Toward Understanding Users’ Interactions with a Mental Health App: An Association Rule Mining Approach

  • Conference paper
  • First Online:
Pervasive Computing Technologies for Healthcare (PH 2022)

Abstract

Mental health apps are gaining increasing research attention. One reason for this is that many users find mental health apps a good alternative for self-management of mental conditions, especially in the last two years when access to physicians was limited because of the COVID-19 pandemic. Despite the existence of several mobile apps targeting mental health, studies show the need to explore and enhance existing mobile health (mHealth) apps to better serve patients and health practitioners. This work aims at analyzing data generated from users of a mobile app to enhance mHealth apps for improving mental health. Particularly, this paper aims to extract knowledge about the relationship between different activities (e.g., sport, home, school, etc.) that affect users’ moods. To achieve this goal, an association rule mining technique was applied on a dataset collected in the wild from 232 users of a mental health app called the FeelingMoodie app. They used the app from September 2021 to May 2022. Our results revealed interesting associations between various daily life activities. Based on these association rules, we provide insights and recommendations for building better mHealth apps and a more personalized user experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    AppAdvice: https://appadvice.com/app/feeling-moodie/1581336127.

References

  1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. ACM SIGMOD Rec. 22(2), 207–216 (1993). https://doi.org/10.1145/170036.170072

    Article  Google Scholar 

  2. Ait-Mlouk, A., Gharnati, F., Agouti, T.: An improved approach for association rule mining using a multi-criteria decision support system: a case study in road safety. Eur. Transp. Res. Rev. 9(3), 1–13 (2017). https://doi.org/10.1007/S12544-017-0257-5/TABLES/9

    Article  Google Scholar 

  3. Alslaity, A., Chan, G., Wilson, R., Orji, R.: Insights from longitudinal evaluation of moodie mental health app. In: Conference on Human Factors in Computing Systems – Proceedings (2022). https://doi.org/10.1145/3491101.3519851

  4. AlSlaity, A., Suruliraj, B., Oyebode, O., Fowles, J., Steeves, D., Orji, R.: Mobile applications for health and wellness: a systematic review. In: Proceedings of the ACM on Human-Computer Interaction, vol. 6, no. EICS, pp. 1–29 (2022). https://doi.org/10.1145/3534525

  5. Altaf, W., Shahbaz, M., Guergachi, A.: Applications of association rule mining in health informatics: a survey. Artif. Intell. Rev. 47(3), 313–340 (2017). https://doi.org/10.1007/S10462-016-9483-9/FIGURES/6

    Article  Google Scholar 

  6. Angeline, D.M.D.: Association rule generation for student performance analysis using Apriori algorithm. SIJ Trans. Comput. Sci. Eng. Appl. (CSEA) 1(1), 12–16 (2013)

    Google Scholar 

  7. Atchinson, B.K., Fox, D.M.: The politics of the health insurance portability and accountability act. Health Affairs (Proj. Hope) 16(3), 146–150 (1997). https://doi.org/10.1377/HLTHAFF.16.3.146

    Article  Google Scholar 

  8. Athanas, A.J., et al.: Association between improvement in baseline mood and long-term use of a mindfulness and meditation app: observational study. JMIR Ment. Health 6, 5 (2019). https://doi.org/10.2196/12617

    Article  Google Scholar 

  9. Aher, S.B., Lobo, L.M.R.J.: Combination of clustering, classification & association rule based approach for course recommender system in e-learning. Int. J. Comput. Appl. 39(7), 8–15 (2012). https://doi.org/10.5120/4830-7087

    Article  Google Scholar 

  10. Berka, P., Rauch, J.: Mining and post-processing of association rules in the atherosclerosis risk domain. In: Khuri, S., Lhotská, L., Pisanti, N. (eds.) ITBAM 2010. LNCS, vol. 6266, pp. 110–117. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15020-3_11

    Chapter  Google Scholar 

  11. Buczak, A.L., Koshute, P.T., Babin, S.M., Feighner, B.H., Lewis, S.H.: A data-driven epidemiological prediction method for dengue outbreaks using local and remote sensing data. BMC Med. Inform. Decis. Mak. 12(1), 1–20 (2012). https://doi.org/10.1186/1472-6947-12-124/FIGURES/24

    Article  Google Scholar 

  12. Chan, G., Alslaity, A., Wilson, R., Orji, R.: Exploring variance in users’ moods across times, seasons, and activities: a longitudinal analysis. In: MobileHCI (2022)

    Google Scholar 

  13. Chan, T.C., Yen, T.J., Yang Chih, F., Hwang, J.S.: ClickDiary: online tracking of health behaviors and mood. J. Med. Internet Res. 17(6), e147 (2015). https://doi.org/10.2196/JMIR.4315

    Article  Google Scholar 

  14. Cho, C.H., Lee, T., Kim, M.G., In, H.P., Kim, L., Lee, H.J.: Mood prediction of patients with mood disorders by machine learning using passive digital phenotypes based on the circadian rhythm: prospective observational cohort study. J. Med. Internet Res. 21, 4 (2019). https://doi.org/10.2196/11029

    Article  Google Scholar 

  15. Concaro, S., Sacchi, L., Cerra, C., Fratino, P., Bellazzi, R.: Mining health care administrative data with temporal association rules on hybrid events. Methods Inf. Med. 50(2), 166–179 (2011). https://doi.org/10.3414/ME10-01-0036

    Article  Google Scholar 

  16. Concaro, S., Sacchi, L., Cerra, C., Fratino, P., Bellazzi, R.: Mining healthcare data with temporal association rules: Improvements and assessment for a practical use. In: Combi, C., Shahar, Y., Abu-Hanna, A. (eds.) AIME 2009. LNCS (LNAI), vol. 5651, pp. 16–25. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02976-9_3

    Chapter  Google Scholar 

  17. Eisenstadt, A., Liverpool, S., Metaxa, A.M., Ciuvat, R.M., Carlsson, C.: Acceptability, engagement, and exploratory outcomes of an emotional well-being app: mixed methods preliminary evaluation and descriptive analysis. JMIR Format. Res. 5, 11 (2021). https://doi.org/10.2196/31064

    Article  Google Scholar 

  18. Go, E., Lee, S., Yoon, T.: Analysis of ebolavirus with decision tree and Apriori algorithm. Int. J. Mach. Learn. Comput. 4, 6 (2014)

    Google Scholar 

  19. Han, J., Pei, J., Tong, H.: Data mining: Concepts and Techniques. Morgan Kaufmann, Los Altos (2011)

    Google Scholar 

  20. van Heerden, A., Tomlinson, M., Swartz, L.: Point of care in your pocket: a research agenda for the field of m-health. Bull. World Health Organ. 90(5), 393–394 (2012). https://doi.org/10.2471/BLT.11.099788

    Article  Google Scholar 

  21. Huberty, J., Green, J., Glissmann, C., Larkey, L., Puzia, M., Lee, C.: Efficacy of the mindfulness meditation mobile app “calm” to reduce stress among college students: randomized controlled trial. JMIR Mhealth Uhealth 7, 6 (2019). https://doi.org/10.2196/14273

    Article  Google Scholar 

  22. Moodie Inc. 2021. Feeling Moodie. https://feelingmoodie.com/#home. Accessed 4 Jan 2022

  23. Katragadda, S., et al.: Association mining based approach to analyze COVID-19 response and case growth in the United States. Sci. Rep. 11(1), 1–12 (2021). https://doi.org/10.1038/s41598-021-96912-5

    Article  Google Scholar 

  24. Kumbhare, T.A., Chobe, S.V.: An overview of association rule mining algorithms. Int. J. Comput. Sci. Inf. Technol. 5(5), 927–930 (2014). ISSN 0975-9646

    Google Scholar 

  25. Lee, D.G., Ryu, K.S., Bashir, M., Bae, J.W., Ryu, K.H.: Discovering medical knowledge using association rule mining in young adults with acute myocardial infarction. J. Med. Syst. 37(2), 1–10 (2013). https://doi.org/10.1007/S10916-012-9896-1/TABLES/6

    Article  Google Scholar 

  26. Li, T., Zhang, M., Cao, H., Li, Y., Tarkoma, S., Hui, P.: What apps did you use?: Understanding the long-term evolution of mobile app usage. In: The Web Conference 2020 - Proceedings of the World Wide Web Conference, WWW 2020, pp. 66–76 (2020). https://doi.org/10.1145/3366423.3380095

  27. Manimaran, J., Velmurugan, T.: A survey of association rule mining in text applications. In: 2013 IEEE International Conference on Computational Intelligence and Computing Research, ICCIC 2013. IEEE (2013). https://doi.org/10.1109/ICCIC.2013.6724258

  28. Maquee, A., Shojaie, A.A., Mosaddar, D.: Clustering and association rules in analyzing the efficiency of maintenance system of an urban bus network. Int. J. Syst. Assur. Eng. Manage. 3(3), 175–183 (2012). https://doi.org/10.1007/S13198-012-0121-X/TABLES/7

    Article  Google Scholar 

  29. Murray, A., Lyle, J.: Patient adoption of mHealth. IMS Institute for Healthcare Informatics, September, pp. 1–63 (2015). www.theimsinstitute.org

  30. Nahar, J., Tickle, K., Shawkat, A., Chen, Y.-P.: Diagnosis heart disease using an association rule discovery approach. In: Proceeding of the IASTED International Conference (2009)

    Google Scholar 

  31. Ordonez, C., Ezquerra, N., Santana, C.A.: Constraining and summarizing association rules in medical data. Knowl. Inf. Syst. 9(3), 259–283 (2006). https://doi.org/10.1007/S10115-005-0226-5

    Article  Google Scholar 

  32. Pan, H., Li, J., Wei, Z.: Mining interesting association rules in medical images. In: Li, X., Wang, S., Dong, Z.Y. (eds.) ADMA 2005. LNCS (LNAI), vol. 3584, pp. 598–609. Springer, Heidelberg (2005). https://doi.org/10.1007/11527503_71

    Chapter  Google Scholar 

  33. Ribeiro, M.X., Bugatti, P.H., Traina, C., Marques, P.M.A., Rosa, N.A., Traina, A.J.M.: Supporting content-based image retrieval and computer-aided diagnosis systems with association rule-based techniques. Data Knowl. Eng. 68(12), 1370–1382 (2009). https://doi.org/10.1016/J.DATAK.2009.07.002

    Article  Google Scholar 

  34. Ribeiro, M.X., Traina, A.J.M., Traina, C., Azevedo-Marques, P.M.: An association rule-based method to support medical image diagnosis with efficiency. IEEE Trans. Multimed. 10(2), 277–285 (2008). https://doi.org/10.1109/TMM.2007.911837

    Article  Google Scholar 

  35. Sharma, N., Verma, C.K.: Association rule mining: an overview, vol. 5, pp. 10–15 (2014)

    Google Scholar 

  36. Tandan, M., Acharya, Y., Pokharel, S., Timilsina, M.: Discovering symptom patterns of COVID-19 patients using association rule mining. Comput. Biol. Med. 131 (2021). https://doi.org/10.1016/J.COMPBIOMED.2021.104249

  37. Thangam, M., Vanniappan, B.: Mining association rules in dengue gene sequence with latent periodicity. Comput. Biol. J. 2015, 1–10 (2015). https://doi.org/10.1155/2015/839692

    Article  Google Scholar 

  38. Wang, X., Smith, M.R., Rangayyan, R.M.: Mammographic information analysis through association-rule mining. In: Canadian Conference on Electrical and Computer Engineering, vol. 3, pp. 1495–1498 (2004). https://doi.org/10.1109/CCECE.2004.1349689

  39. Zaïane, O., Antonie, M.: Classifying text documents by associating terms with text categories. In: ADC 2002: Proceedings of the 13th Australasian Database Conference, pp. 215–222 (2002)

    Google Scholar 

  40. The Personal Information Protection and Electronic Documents Act (PIPEDA) - Office of the Privacy Commissioner of Canada. https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/. Accessed 9 Jan 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Alslaity .

Editor information

Editors and Affiliations

APPENDIX 1. Summary of the Association Rules

APPENDIX 1. Summary of the Association Rules

Rule

Mood

Antecedent

Consequent

{‘Romance’, ‘Sports’}

{‘Family’}

Overall

{‘Event’, ‘Friends’}

{‘Exams’}

Sad

{‘Event’, ‘Romance’}

{‘Exams’}

Sad

{‘Event’, ‘Sports’}

{‘Family’}

Sad

{‘Friends’}

Sad

{‘Exams’, ‘Family’}

{‘Music’}

Mad

{‘Exams’, ‘Hobbies’}

{‘Food’}

Good

{‘Music’}

Rad

{‘Sports’}

Rad

{‘Exams’, ‘Music’}

{‘Family’}

Mad

{‘Exams’, ‘Sleep’}

{‘Food’}

Good

{‘Exams’, ‘Sports’}

{‘Friends’}

Sad

{‘Exams’, ‘Weather’}

{‘Family’}

Rad

{‘Family’, ‘Romance’}

{‘Friends’}

Mad

{‘Family’, ‘Sports’}

{‘Friends’}

Sad

{‘Finance’, ‘Home’}

{‘Family’}

Mad

{‘Friends’, ‘Hobbies’}

{‘Relax’}

Mad

{‘Friends’, ‘Music’}

{‘Family’}

Mad

{‘Friends’, ‘Romance’}

{‘Family’}

Mad

{‘Friends’, ‘Sleep’}

{‘Food’}

Good

{‘Food’}

Overall

{‘Friends’, ‘Sports’}

{‘Family’}

Sad

{‘Friends’, ‘Weather’}

{‘Family’}

Neutral

{‘Hobbies’, ‘Sleep’}

{‘Food’}

Good

{‘Friends’}

Neutral

{‘Food’}

Overall

{‘Hobbies’, ‘Sports’}

{‘Sleep’}

Overall

{‘Friends’}

Neutral

{‘Music’, ‘Hobbies’}

{‘Food’}

Good

{‘Music’, ‘Hobbies’}

{‘Sleep’}

Overall

{‘Music’, ‘Romance’}

{‘Sleep’}

Overall

{‘Music’, ‘Work’}

{‘Family’}

Mad

 

{‘Sleep’}

Sad

{‘Other’, ‘Family’}

{‘Food’}

Good

{‘Other’, ‘Sleep’}

{‘Food’}

Good

{‘Romance’, ‘Hobbies’}

{‘Food’}

Good

{‘Romance’, ‘Sleep’}

{‘Friends’}

Neutral

 

{‘Music’}

Mad

{‘Romance’, ‘Sports’}

{‘Family’}

Sad

 

{‘Family’}

Rad

 

{‘Friends’}

Neutral

 

{‘Friends’}

Sad

{‘Romance’, ‘Work’}

{‘Friends’}

Neutral

{‘Shopping’, ‘Family’}

{‘Friends’}

Neutral

{‘Shopping’, ‘Food’}

{‘Sleep’}

Overall

{‘Shopping’, ‘Friends’}

{‘Family’}

Neutral

 

{‘Family’}

Rad

{‘Shopping’, ‘Home’}

{‘Sleep’}

Overall

 

{‘Food’}

Good

{‘Shopping’, ‘Music’}

{‘Family’}

Rad

 

{‘Weather’}

Rad

{‘Shopping’, ‘Relax’}

{‘Home’}

Rad

 

{‘Sleep’}

Overall

{‘Shopping’, ‘Sleep’}

{‘Food’}

Good

 

{‘Food’}

Overall

{‘Shopping’, ‘Sports’}

{‘Home’}

Rad

{‘Shopping’, ‘Weather’}

{‘Family’}

Rad

{‘Weather’, ‘Hobbies’}

{‘Romance’}

Neutral

{‘Weather’, ‘Romance’}

{‘Friends’}

Neutral

{‘Weather’, ‘Sleep’}

{‘Music’}

Mad

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alslaity, A., Chan, G., Wilson, R., Orji, R. (2023). Toward Understanding Users’ Interactions with a Mental Health App: An Association Rule Mining Approach. In: Tsanas, A., Triantafyllidis, A. (eds) Pervasive Computing Technologies for Healthcare. PH 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 488. Springer, Cham. https://doi.org/10.1007/978-3-031-34586-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34586-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34585-2

  • Online ISBN: 978-3-031-34586-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics