[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimizing Feature Selection and Oversampling Using Metaheuristic Algorithms for Binary Fraud Detection Classification

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations (AIAI 2023)

Abstract

Identifying fraudulent transactions and preventing unauthorized individuals from revealing credit card information are essential tasks for different financial entities. Fraud detection systems are used to apply this task by identifying the fraudulent transactions from the normal ones. Usually, the data used for fraud detection is imbalanced, containing many more instances of normal transactions than fraudulent ones. This causes diminished classification task results because it is hard to train a classifier that distinguishes between them. Another problem is caused by many features under study for the fraud detection task. This paper utilizes different metaheuristic algorithms for feature selection to solve the problem of unneeded features and uses the Synthetic Minority Oversampling TEchnique (SMOTE) to solve the imbalance problem of the data using different classification algorithms. The metaheuristic algorithms include Particle Swarm Optimization (PSO), Salp Swarm Algorithm (SSA), Grey Wolf Optimizer (GWO), and A Multi-Verse Optimizer (MVO), whereas the classification algorithms include Logistic Regression (LR), Decision Tree (DT), and Naive Bayes (NB) algorithms. The results show that applying the oversampling technique generated better results for the G-Mean and Recall values, while the feature selection process enhanced the results of almost all the classification algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 89.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud.

References

  1. Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system: a survey. J. Netw. Comput. Appl. 68, 90–113 (2016)

    Article  Google Scholar 

  2. Abdel-Basset, M., Abdel-Fatah, L., Sangaiah, A.K.: Metaheuristic algorithms: a comprehensive review. In: Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications, pp. 185–231 (2018)

    Google Scholar 

  3. Chaudhary, K., Yadav, J., Mallick, B.: A review of fraud detection techniques: credit card. Int. J. Comput. Appl. 45(1), 39–44 (2012)

    Google Scholar 

  4. Cox, D.R.: The regression analysis of binary sequences. J. Roy. Stat. Soc. Ser. B (Methodol.) 20(2), 215–232 (1958)

    MathSciNet  MATH  Google Scholar 

  5. Duman, E., Elikucuk, I.: Solving credit card fraud detection problem by the new metaheuristics migrating birds optimization. In: Rojas, I., Joya, G., Cabestany, J. (eds.) IWANN 2013. LNCS, vol. 7903, pp. 62–71. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38682-4_8

    Chapter  Google Scholar 

  6. Duman, E., Ozcelik, M.H.: Detecting credit card fraud by genetic algorithm and scatter search. Expert Syst. Appl. 38(10), 13057–13063 (2011)

    Article  Google Scholar 

  7. Faris, H., Aljarah, I., Mirjalili, S., Castillo, P.A., Guervós, J.J.M.: Evolopy: an open-source nature-inspired optimization framework in python. IJCCI (ECTA) 1, 171–177 (2016)

    Google Scholar 

  8. Gharehchopogh, F.S., Maleki, I., Dizaji, Z.A.: Chaotic vortex search algorithm: metaheuristic algorithm for feature selection. Evol. Intell. 15(3), 1777–1808 (2022)

    Article  Google Scholar 

  9. Jovanovic, D., Antonijevic, M., Stankovic, M., Zivkovic, M., Tanaskovic, M., Bacanin, N.: Tuning machine learning models using a group search firefly algorithm for credit card fraud detection. Mathematics 10(13), 2272 (2022)

    Article  Google Scholar 

  10. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  11. Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18(17), 1–5 (2017). http://jmlr.org/papers/v18/16-365.html

  12. Miao, J., Niu, L.: A survey on feature selection. Procedia Comput. Sci. 91, 919–926 (2016)

    Article  Google Scholar 

  13. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Article  Google Scholar 

  14. Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27(2), 495–513 (2016)

    Article  Google Scholar 

  15. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  16. Murphy, K.P., et al.: Naive bayes classifiers. Univ. Br. Columbia 18(60), 1–8 (2006)

    Google Scholar 

  17. Obiedat, R., Harfoushi, O., Qaddoura, R., Al-Qaisi, L., Al-Zoubi, A.: An evolutionary-based sentiment analysis approach for enhancing government decisions during covid-19 pandemic: the case of Jordan. Appl. Sci. 11(19), 9080 (2021)

    Article  Google Scholar 

  18. Obiedat, R., et al.: Sentiment analysis of customers’ reviews using a hybrid evolutionary svm-based approach in an imbalanced data distribution. IEEE Access 10, 22260–22273 (2022)

    Article  Google Scholar 

  19. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Qaddoura, R., Biltawi, M.: Improving fraud detection in an imbalanced class distribution using different oversampling techniques. In: Engineering International Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI). IEEE (2022)

    Google Scholar 

  21. Qaddoura, R., Faris, H., Aljarah, I., Castillo, P.A.: EvoCluster: an open-source nature-inspired optimization clustering framework in python. In: Castillo, P.A., Jiménez Laredo, J.L., Fernández de Vega, F. (eds.) EvoApplications 2020. LNCS, vol. 12104, pp. 20–36. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43722-0_2

    Chapter  Google Scholar 

  22. Qaddoura, R., Faris, H., Aljarah, I., Castillo, P.A.: Evocluster: an open-source nature-inspired optimization clustering framework. SN Comput. Sci. 2(3), 1–12 (2021)

    Article  Google Scholar 

  23. Sayed, G.I., Tharwat, A., Hassanien, A.E.: Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection. Appl. Intell. 49(1), 188–205 (2019)

    Article  Google Scholar 

  24. Sharma, S., Gosain, A., Jain, S.: A review of the oversampling techniques in class imbalance problem. In: Khanna, A., Gupta, D., Bhattacharyya, S., Hassanien, A.E., Anand, S., Jaiswal, A. (eds.) International Conference on Innovative Computing and Communications. AISC, vol. 1387, pp. 459–472. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2594-7_38

    Chapter  Google Scholar 

  25. Taghian, S., Nadimi-Shahraki, M.H.: A binary metaheuristic algorithm for wrapper feature selection. Int. J. Comput. Sci. Eng. (IJCSE) 8, 168–172 (2019)

    Google Scholar 

  26. Taghian, S., Nadimi-Shahraki, M.H., Zamani, H.: Comparative analysis of transfer function-based binary metaheuristic algorithms for feature selection. In: 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), pp. 1–6. IEEE (2018)

    Google Scholar 

  27. Varmedja, D., Karanovic, M., Sladojevic, S., Arsenovic, M., Anderla, A.: Credit card fraud detection-machine learning methods. In: 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH), pp. 1–5. IEEE (2019)

    Google Scholar 

  28. Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)

    Article  Google Scholar 

  29. Yusta, S.C.: Different metaheuristic strategies to solve the feature selection problem. Pattern Recogn. Lett. 30(5), 525–534 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raneem Qaddoura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biltawi, M.M., Qaddoura, R., Faris, H. (2023). Optimizing Feature Selection and Oversampling Using Metaheuristic Algorithms for Binary Fraud Detection Classification. In: Maglogiannis, I., Iliadis, L., MacIntyre, J., Dominguez, M. (eds) Artificial Intelligence Applications and Innovations. AIAI 2023. IFIP Advances in Information and Communication Technology, vol 675. Springer, Cham. https://doi.org/10.1007/978-3-031-34111-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34111-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34110-6

  • Online ISBN: 978-3-031-34111-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics