Abstract
Identifying fraudulent transactions and preventing unauthorized individuals from revealing credit card information are essential tasks for different financial entities. Fraud detection systems are used to apply this task by identifying the fraudulent transactions from the normal ones. Usually, the data used for fraud detection is imbalanced, containing many more instances of normal transactions than fraudulent ones. This causes diminished classification task results because it is hard to train a classifier that distinguishes between them. Another problem is caused by many features under study for the fraud detection task. This paper utilizes different metaheuristic algorithms for feature selection to solve the problem of unneeded features and uses the Synthetic Minority Oversampling TEchnique (SMOTE) to solve the imbalance problem of the data using different classification algorithms. The metaheuristic algorithms include Particle Swarm Optimization (PSO), Salp Swarm Algorithm (SSA), Grey Wolf Optimizer (GWO), and A Multi-Verse Optimizer (MVO), whereas the classification algorithms include Logistic Regression (LR), Decision Tree (DT), and Naive Bayes (NB) algorithms. The results show that applying the oversampling technique generated better results for the G-Mean and Recall values, while the feature selection process enhanced the results of almost all the classification algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system: a survey. J. Netw. Comput. Appl. 68, 90–113 (2016)
Abdel-Basset, M., Abdel-Fatah, L., Sangaiah, A.K.: Metaheuristic algorithms: a comprehensive review. In: Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications, pp. 185–231 (2018)
Chaudhary, K., Yadav, J., Mallick, B.: A review of fraud detection techniques: credit card. Int. J. Comput. Appl. 45(1), 39–44 (2012)
Cox, D.R.: The regression analysis of binary sequences. J. Roy. Stat. Soc. Ser. B (Methodol.) 20(2), 215–232 (1958)
Duman, E., Elikucuk, I.: Solving credit card fraud detection problem by the new metaheuristics migrating birds optimization. In: Rojas, I., Joya, G., Cabestany, J. (eds.) IWANN 2013. LNCS, vol. 7903, pp. 62–71. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38682-4_8
Duman, E., Ozcelik, M.H.: Detecting credit card fraud by genetic algorithm and scatter search. Expert Syst. Appl. 38(10), 13057–13063 (2011)
Faris, H., Aljarah, I., Mirjalili, S., Castillo, P.A., Guervós, J.J.M.: Evolopy: an open-source nature-inspired optimization framework in python. IJCCI (ECTA) 1, 171–177 (2016)
Gharehchopogh, F.S., Maleki, I., Dizaji, Z.A.: Chaotic vortex search algorithm: metaheuristic algorithm for feature selection. Evol. Intell. 15(3), 1777–1808 (2022)
Jovanovic, D., Antonijevic, M., Stankovic, M., Zivkovic, M., Tanaskovic, M., Bacanin, N.: Tuning machine learning models using a group search firefly algorithm for credit card fraud detection. Mathematics 10(13), 2272 (2022)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)
Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18(17), 1–5 (2017). http://jmlr.org/papers/v18/16-365.html
Miao, J., Niu, L.: A survey on feature selection. Procedia Comput. Sci. 91, 919–926 (2016)
Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)
Mirjalili, S., Mirjalili, S.M., Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. 27(2), 495–513 (2016)
Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
Murphy, K.P., et al.: Naive bayes classifiers. Univ. Br. Columbia 18(60), 1–8 (2006)
Obiedat, R., Harfoushi, O., Qaddoura, R., Al-Qaisi, L., Al-Zoubi, A.: An evolutionary-based sentiment analysis approach for enhancing government decisions during covid-19 pandemic: the case of Jordan. Appl. Sci. 11(19), 9080 (2021)
Obiedat, R., et al.: Sentiment analysis of customers’ reviews using a hybrid evolutionary svm-based approach in an imbalanced data distribution. IEEE Access 10, 22260–22273 (2022)
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Qaddoura, R., Biltawi, M.: Improving fraud detection in an imbalanced class distribution using different oversampling techniques. In: Engineering International Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI). IEEE (2022)
Qaddoura, R., Faris, H., Aljarah, I., Castillo, P.A.: EvoCluster: an open-source nature-inspired optimization clustering framework in python. In: Castillo, P.A., Jiménez Laredo, J.L., Fernández de Vega, F. (eds.) EvoApplications 2020. LNCS, vol. 12104, pp. 20–36. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43722-0_2
Qaddoura, R., Faris, H., Aljarah, I., Castillo, P.A.: Evocluster: an open-source nature-inspired optimization clustering framework. SN Comput. Sci. 2(3), 1–12 (2021)
Sayed, G.I., Tharwat, A., Hassanien, A.E.: Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection. Appl. Intell. 49(1), 188–205 (2019)
Sharma, S., Gosain, A., Jain, S.: A review of the oversampling techniques in class imbalance problem. In: Khanna, A., Gupta, D., Bhattacharyya, S., Hassanien, A.E., Anand, S., Jaiswal, A. (eds.) International Conference on Innovative Computing and Communications. AISC, vol. 1387, pp. 459–472. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2594-7_38
Taghian, S., Nadimi-Shahraki, M.H.: A binary metaheuristic algorithm for wrapper feature selection. Int. J. Comput. Sci. Eng. (IJCSE) 8, 168–172 (2019)
Taghian, S., Nadimi-Shahraki, M.H., Zamani, H.: Comparative analysis of transfer function-based binary metaheuristic algorithms for feature selection. In: 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), pp. 1–6. IEEE (2018)
Varmedja, D., Karanovic, M., Sladojevic, S., Arsenovic, M., Anderla, A.: Credit card fraud detection-machine learning methods. In: 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH), pp. 1–5. IEEE (2019)
Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)
Yusta, S.C.: Different metaheuristic strategies to solve the feature selection problem. Pattern Recogn. Lett. 30(5), 525–534 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 IFIP International Federation for Information Processing
About this paper
Cite this paper
Biltawi, M.M., Qaddoura, R., Faris, H. (2023). Optimizing Feature Selection and Oversampling Using Metaheuristic Algorithms for Binary Fraud Detection Classification. In: Maglogiannis, I., Iliadis, L., MacIntyre, J., Dominguez, M. (eds) Artificial Intelligence Applications and Innovations. AIAI 2023. IFIP Advances in Information and Communication Technology, vol 675. Springer, Cham. https://doi.org/10.1007/978-3-031-34111-3_38
Download citation
DOI: https://doi.org/10.1007/978-3-031-34111-3_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34110-6
Online ISBN: 978-3-031-34111-3
eBook Packages: Computer ScienceComputer Science (R0)