[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Improved Segmentation of Deep Sulci in Cortical Gray Matter Using a Deep Learning Framework Incorporating Laplace’s Equation

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Abstract

When developing tools for automated cortical segmentation, the ability to produce topologically correct segmentations is important in order to compute geometrically valid morphometry measures. In practice, accurate cortical segmentation is challenged by image artifacts and the highly convoluted anatomy of the cortex itself. To address this, we propose a novel deep learning-based cortical segmentation method in which prior knowledge about the geometry of the cortex is incorporated into the network during the training process. We design a loss function which uses the theory of Laplace’s equation applied to the cortex to locally penalize unresolved boundaries between tightly folded sulci. Using an ex vivo MRI dataset of human medial temporal lobe specimens, we demonstrate that our approach outperforms baseline segmentation networks, both quantitatively and qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cruz, R.S., Lebrat, L., Bourgeat, P., Fookes, C., Fripp, J., Salvado, O.: DeepCSR: a 3D deep learning approach for cortical surface reconstruction. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 806–815 (2021)

    Google Scholar 

  2. DeKraker, J., Ferko, K.M., Lau, J.C., Köhler, S., Khan, A.R.: Unfolding the hippocampus: an intrinsic coordinate system for subfield segmentations and quantitative mapping. Neuroimage 167, 408–418 (2018)

    Article  Google Scholar 

  3. Epicoco, I., Mocavero, S.: The performance model of an enhanced parallel algorithm for the SOR method. In: Murgante, B., et al. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 44–56. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3_4

    Chapter  Google Scholar 

  4. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  5. Han, X., Pham, D.L., Tosun, D., Rettmann, M.E., Xu, C., Prince, J.L.: CRUISE: cortical reconstruction using implicit surface evolution. Neuroimage 23(3), 997–1012 (2004)

    Article  Google Scholar 

  6. Hansen, P.B.: Numerical solution of Laplace’s equation (1992)

    Google Scholar 

  7. Henschel, L., Conjeti, S., Estrada, S., Diers, K., Fischl, B., Reuter, M.: Fastsurfer-a fast and accurate deep learning based neuroimaging pipeline. NeuroImage 219, 117012 (2020)

    Google Scholar 

  8. Hoopes, A., Iglesias, J.E., Fischl, B., Greve, D., Dalca, A.V.: TopoFit: rapid reconstruction of topologically-correct cortical surfaces. In: Medical Imaging with Deep Learning (2021)

    Google Scholar 

  9. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  10. Jones, S.E., Buchbinder, B.R., Aharon, I.: Three-dimensional mapping of cortical thickness using Laplace’s equation. Hum. Brain Mapp. 11(1), 12–32 (2000)

    Article  Google Scholar 

  11. Kim, J.S., et al.: Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27(1), 210–221 (2005)

    Article  Google Scholar 

  12. Ma, Q., Robinson, E.C., Kainz, B., Rueckert, D., Alansary, A.: PialNN: a fast deep learning framework for cortical pial surface reconstruction. In: International Workshop on Machine Learning in Clinical Neuroimaging, pp. 73–81 (2021)

    Google Scholar 

  13. Ogniewicz, R., Kübler, O.: Hierarchic Voronoi skeletons. Pattern Recognit. 28(3), 343–359 (1995)

    Article  Google Scholar 

  14. Osechinskiy, S., Kruggel, F.: Cortical surface reconstruction from high-resolution MR brain images. Int. J. Biomed. Imaging 2012 (2012)

    Google Scholar 

  15. Ravikumar, S., Wisse, L., Gao, Y., Gerig, G., Yushkevich, P.: Facilitating manual segmentation of 3D datasets using contour and intensity guided interpolation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 714–718 (2019)

    Google Scholar 

  16. Wisse, L.E., et al.: Downstream effects of polypathology on neurodegeneration of medial temporal lobe subregions. Acta Neuropathol. Commun. 9(1), 1–11 (2021)

    Article  Google Scholar 

  17. Yang, S., Matthias, K.G.: The optimal relaxation parameter for the SOR method applied to a classical model problem. Technical report, Technical Report TR2007-6, University of Maryland, Baltimore County (2007)

    Google Scholar 

  18. Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: nnFormer: interleaved transformer for volumetric segmentation. arXiv preprint arXiv:2109.03201 (2021)

Download references

Acknowledgements

We gratefully acknowledge the tissue donors and their families. This work was supported by the NIH (Grants RF1 AG069474, P30 AG072979 and R01 AG056014), a UCLM travel and research grant (to R.I), and an Alzheimer’s Association grant (AARF-19-615258) (to L.E.M.W).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sadhana Ravikumar or Paul A. Yushkevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ravikumar, S. et al. (2023). Improved Segmentation of Deep Sulci in Cortical Gray Matter Using a Deep Learning Framework Incorporating Laplace’s Equation. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics