[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

GRAPH Reinforcement Learning for Operator Selection in the ALNS Metaheuristic

  • Conference paper
  • First Online:
Optimization and Learning (OLA 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1824))

Included in the following conference series:

Abstract

ALNS is a popular metaheuristic with renowned efficiency in solving combinatorial optimisation problems. However, despite 16 years of intensive research into ALNS, whether the embedded adaptive layer can efficiently select operators to improve the incumbent remains an open question. In this work, we formulate the choice of operators as a Markov Decision Process, and propose a practical approach based on Deep Reinforcement Learning and Graph Neural Networks. The results show that our proposed method achieves better performance than the classic ALNS adaptive layer due to the choice of operator being conditioned on the current solution. We also discuss important considerations such as the size of the operator portfolio and the impact of the choice of operator scales. Notably, our approach can also save significant time and labour costs for handcrafting problem-specific operator portfolios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, R., et al.: Analytics and machine learning in vehicle routing research. Int. J. Prod. Res. 61(1), 4–30 (2023)

    Google Scholar 

  2. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. In: ICLR Workshops (2016)

    Google Scholar 

  3. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Demir, E., Bektaş, T., Laporte, G.: An adaptive large neighborhood search heuristic for the pollution-routing problem. Eur. J. Oper. Res. 223(2), 346–359 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Emeç, U., Çatay, B., Bozkaya, B.: An adaptive large neighborhood search for an e-grocery delivery routing problem. Comput. Oper. Res. 69, 109–125 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Falkner, J.K., Thyssens, D., Schmidt-Thieme, L.: Large neighborhood search based on neural construction heuristics. arXiv:2205.00772 (2022)

  7. Hottung, A., Tierney, K.: Neural large neighborhood search for the capacitated vehicle routing problem. In: ECAI (2020)

    Google Scholar 

  8. Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A.M., Talbi, E.G.: Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: a state-of-the-art. Eur. J. Oper. Res. 296(2), 393–422 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Keskin, M., Çatay, B.: Partial recharge strategies for the electric vehicle routing problem with time windows. Transp. Res. Part C Emerg. 65, 111–127 (2016)

    Article  Google Scholar 

  10. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems! In: ICLR (2018)

    Google Scholar 

  11. Mancini, S.: A real-life multi depot multi period vehicle routing problem with a heterogeneous fleet: formulation and adaptive large neighborhood search based matheuristic. Transp. Res. Part C Emerg. 70, 100–112 (2016)

    Article  Google Scholar 

  12. Mara, S.T.W., Norcahyo, R., Jodiawan, P., Lusiantoro, L., Rifai, A.P.: A survey of adaptive large neighborhood search algorithms and applications. Comput. Oper. Res. 146, 105903 (2022)

    Google Scholar 

  13. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  14. Nazari, M., Oroojlooy, A., Snyder, L., Takác, M.: Reinforcement learning for solving the vehicle routing problem. In: NeurIPS (2018)

    Google Scholar 

  15. Oberweger, F., Raidl, G., Rönnberg, E., Huber, M.: A learning large neighborhood search for the staff rerostering problem. In: Schaus, P. (ed.) CPAIOR 2022. LNCS, vol. 13292, pp. 300–317. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08011-1_20

    Chapter  Google Scholar 

  16. Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Comput. Oper. Res. 34(8), 2403–2435 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Reijnen, R., Zhang, Y., Lau, H.C., Bukhsh, Z.: Operator selection in adaptive large neighborhood search using deep reinforcement learning. arXiv:2211.00759 (2022)

  18. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

    Article  Google Scholar 

  19. Santini, A., Ropke, S., Hvattum, L.M.: A comparison of acceptance criteria for the adaptive large neighbourhood search metaheuristic. J. Heurist. 24(5), 783–815 (2018). https://doi.org/10.1007/s10732-018-9377-x

    Article  Google Scholar 

  20. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  21. Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2_30

    Chapter  Google Scholar 

  22. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35(2), 254–265 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Syed, A.A., Akhnoukh, K., Kaltenhaeuser, B., Bogenberger, K.: Neural network based large neighborhood search algorithm for ride hailing services. In: Moura Oliveira, P., Novais, P., Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11804, pp. 584–595. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30241-2_49

    Chapter  Google Scholar 

  24. Talbi, E.G.: Machine learning into metaheuristics: a survey and taxonomy. ACM Comput. Surv. (CSUR) 54(6), 1–32 (2021)

    Article  Google Scholar 

  25. Turkeš, R., Sörensen, K., Hvattum, L.M.: Meta-analysis of metaheuristics: quantifying the effect of adaptiveness in adaptive large neighborhood search. Eur. J. Oper. Res. 292(2), 423–442 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  27. Watkins, C., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by The Alan Turing Institute under the Enrichment Scheme and the UK EPSRC grant EP/N510129/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syu-Ning Johnn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Johnn, SN., Darvariu, VA., Handl, J., Kalcsics, J. (2023). GRAPH Reinforcement Learning for Operator Selection in the ALNS Metaheuristic. In: Dorronsoro, B., Chicano, F., Danoy, G., Talbi, EG. (eds) Optimization and Learning. OLA 2023. Communications in Computer and Information Science, vol 1824. Springer, Cham. https://doi.org/10.1007/978-3-031-34020-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34020-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34019-2

  • Online ISBN: 978-3-031-34020-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics