Abstract
ALNS is a popular metaheuristic with renowned efficiency in solving combinatorial optimisation problems. However, despite 16 years of intensive research into ALNS, whether the embedded adaptive layer can efficiently select operators to improve the incumbent remains an open question. In this work, we formulate the choice of operators as a Markov Decision Process, and propose a practical approach based on Deep Reinforcement Learning and Graph Neural Networks. The results show that our proposed method achieves better performance than the classic ALNS adaptive layer due to the choice of operator being conditioned on the current solution. We also discuss important considerations such as the size of the operator portfolio and the impact of the choice of operator scales. Notably, our approach can also save significant time and labour costs for handcrafting problem-specific operator portfolios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bai, R., et al.: Analytics and machine learning in vehicle routing research. Int. J. Prod. Res. 61(1), 4–30 (2023)
Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. In: ICLR Workshops (2016)
Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)
Demir, E., Bektaş, T., Laporte, G.: An adaptive large neighborhood search heuristic for the pollution-routing problem. Eur. J. Oper. Res. 223(2), 346–359 (2012)
Emeç, U., Çatay, B., Bozkaya, B.: An adaptive large neighborhood search for an e-grocery delivery routing problem. Comput. Oper. Res. 69, 109–125 (2016)
Falkner, J.K., Thyssens, D., Schmidt-Thieme, L.: Large neighborhood search based on neural construction heuristics. arXiv:2205.00772 (2022)
Hottung, A., Tierney, K.: Neural large neighborhood search for the capacitated vehicle routing problem. In: ECAI (2020)
Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A.M., Talbi, E.G.: Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: a state-of-the-art. Eur. J. Oper. Res. 296(2), 393–422 (2022)
Keskin, M., Çatay, B.: Partial recharge strategies for the electric vehicle routing problem with time windows. Transp. Res. Part C Emerg. 65, 111–127 (2016)
Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems! In: ICLR (2018)
Mancini, S.: A real-life multi depot multi period vehicle routing problem with a heterogeneous fleet: formulation and adaptive large neighborhood search based matheuristic. Transp. Res. Part C Emerg. 70, 100–112 (2016)
Mara, S.T.W., Norcahyo, R., Jodiawan, P., Lusiantoro, L., Rifai, A.P.: A survey of adaptive large neighborhood search algorithms and applications. Comput. Oper. Res. 146, 105903 (2022)
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)
Nazari, M., Oroojlooy, A., Snyder, L., Takác, M.: Reinforcement learning for solving the vehicle routing problem. In: NeurIPS (2018)
Oberweger, F., Raidl, G., Rönnberg, E., Huber, M.: A learning large neighborhood search for the staff rerostering problem. In: Schaus, P. (ed.) CPAIOR 2022. LNCS, vol. 13292, pp. 300–317. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-08011-1_20
Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Comput. Oper. Res. 34(8), 2403–2435 (2007)
Reijnen, R., Zhang, Y., Lau, H.C., Bukhsh, Z.: Operator selection in adaptive large neighborhood search using deep reinforcement learning. arXiv:2211.00759 (2022)
Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)
Santini, A., Ropke, S., Hvattum, L.M.: A comparison of acceptance criteria for the adaptive large neighbourhood search metaheuristic. J. Heurist. 24(5), 783–815 (2018). https://doi.org/10.1007/s10732-018-9377-x
Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)
Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2_30
Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35(2), 254–265 (1987)
Syed, A.A., Akhnoukh, K., Kaltenhaeuser, B., Bogenberger, K.: Neural network based large neighborhood search algorithm for ride hailing services. In: Moura Oliveira, P., Novais, P., Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11804, pp. 584–595. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30241-2_49
Talbi, E.G.: Machine learning into metaheuristics: a survey and taxonomy. ACM Comput. Surv. (CSUR) 54(6), 1–32 (2021)
Turkeš, R., Sörensen, K., Hvattum, L.M.: Meta-analysis of metaheuristics: quantifying the effect of adaptiveness in adaptive large neighborhood search. Eur. J. Oper. Res. 292(2), 423–442 (2021)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)
Watkins, C., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)
Acknowledgements
This work was partially supported by The Alan Turing Institute under the Enrichment Scheme and the UK EPSRC grant EP/N510129/1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Johnn, SN., Darvariu, VA., Handl, J., Kalcsics, J. (2023). GRAPH Reinforcement Learning for Operator Selection in the ALNS Metaheuristic. In: Dorronsoro, B., Chicano, F., Danoy, G., Talbi, EG. (eds) Optimization and Learning. OLA 2023. Communications in Computer and Information Science, vol 1824. Springer, Cham. https://doi.org/10.1007/978-3-031-34020-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-34020-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-34019-2
Online ISBN: 978-3-031-34020-8
eBook Packages: Computer ScienceComputer Science (R0)