Abstract
In this paper, we propose a multi-objective formulation for solving the menu planning problem, in a Brazilian school context. Considering the school category, the student age group, and the school duration time, we propose a formulation of the problem in which the total cost and the nutritional error according to the Brazilian reference are simultaneously minimized. The menus must also meet some qualitative requirements, such as variety and harmony of preparations. We propose a NSGA-II for solving the problem. As a comparison, we use a weighted-sum approach for transforming the multi-objective problem into a mono-objective one and solve it using a generic Genetic Algorithm. Using as test scenario full-time preschool students (4-5 years old), 5-day menus are obtained by both methodologies. The menus are qualitatively and quantitatively assessed applying the Quality Index of Nutritional Food Safety Coordination (IQ COSAN, acronym in Portuguese) and compared to a 5-day menu for a Brazilian school. Results show the methodology is very promising and the obtained menus are adequate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Balintfy, J.: Menu planning by computer. Comu. ACM 7(4), 255–259 (1964)
Bianchini, V.U., Martinelli, S., Soares, P., Fabri, R., Cavalli, S.: Criteria adopted for school menu planning within the framework of the Brazilian school feeding program. Revista da Nutrição 33, 1–13 (2020)
Brasil: Guia Alimentar para a população brasileira. Brasil. Ministério da Saúde. Secretaria de Atenção à Saúde. Dep. de Atenção Básica., Brasília, 2 edn. (2014)
Brasil: Fundo nacional de desenvolvimento de educação(fnde) pnae: Alimentação escolar (2017). http://www.fnde.gov.br/programas/alimentacao-escolar
Brasil: Ministério da educação. fundo nacional de desenvolvimento de educação(fnde) pnae: Alimentação escolar (2017). http://www.fnde.gov.br/programas/alimentacao-escolar
Brasil, M.d.E.: Índice de qualidade da coordenação de segurança alimentar nutricional - iq cosan (2022). https://www.fnde.gov.br/index.php/programas/pnae/pnae-area-gestores/ferramentas-de-apoio-ao-nutricionista/item/12142-iq-cosan
Bulka, J., Izworski, A., Koleszynska, J., Lis, J., Wochlik., I.: Automatic meal planning using artificial intelligence algorithm in computer aided diabetes therapy. In: 2009 4th International Conference on Autonomous Robots and Agents, pp. 393–397. IEEE (2009)
Chaves, L.G., Santana, T., Gabriel, C.: Reflexões sobre a atuação do nutricionista no programa nacional de alimentação escolar no brasil. Ciência e Saúde Coletiva 18, 917–926 (2013)
Chvatal, V.: Linear Programming. Series of Books in the Mathematical Sciences, W. H. Freeman (1983)
Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley Interscience Series in Systems and Optimization, Wiley (2001)
Flores, P., et al.: Pladiet: Un sistema de cómputo para el diseño de dietas individualizas utilizando algoritmos genéticos (2007)
(FoRC), F.R.C.: Departamento de alimentos e nutrição experimental. tabela brasileira de composição de alimentos - tbca-usp (2018). http://www.fcf.usp.br/tbca
Gaal, B., Vassányi, I., Kozmann, G.: A novel artificial intelligence method for weekly dietary menu planning. Methods Inf. Med. 44(05), 655–664 (2005)
Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Series in the Mathematical Sciences, W. H. Freeman (1979)
Gomes, F.R.: Pró-dieta: Gerador automático de cardápios personalizados baseado em Algoritmo Genético. Universidade Federal de Uberlândia, Uberlândia, Dissertação de mestrado (2012)
Holland, J.H.: Adaptation in Natural and Artificial Systems. Massachusetts, Cambridge (1975)
Kahraman, A., Seven, H.A.: Healthy daily meal planner. In: Genetic and Evolutionary Computation Conference - Undergraduate Student Workshop (GECCO 05 UGWS), pp. 25–29 (2005)
Kaldirim, E., Kose, Z.: Application of a multi-objetictive genetic algorithm to the modified diet problem. In: Genetic and Evolutionary Computation Coference (GECCO). Seattle, WA, USA. (2006)
Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer (2013)
Marcelino, C., et al.: An efficient multi-objective evolutionary approach for solving the operation of multi-reservoir system scheduling in hydro-power plants. Expert Syst. Appl. 185, 115638 (2021). https://doi.org/10.1016/j.eswa.2021.115638
de Minas Gerais), G.: Cardápios da alimentação escolar - educação básica (2014). https://www2.educacao.mg.gov.br/images/documentos/
NEPA: Núcleo de estudos e pesquisas em alimentação.tabela brasileira de composição de alimentos - taco (2011). http://www.unicamp.br/nepa/taco/tabela.php?ativo=tabela
Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. The Addison-Wesley Series in Artificial Intelligence, Addison-Wesley (1984)
Seljak, B.K.: Dietary menu planning using an evolutionary method. In: INES- International Conference on Intelligent Engineering Systems, pp. 108–113 (2006)
Seljak, B.K.: Comput-based dietary menu planning. J. Food Composit. Anal. 22(5), 414–420 (2009)
Sufahani, S., Ismail, Z.: A new menu planning model for Malaysian secondary schools using optimization approach. Appl. Math. Sci. 8(151), 7511–7518 (2014)
Sufahani, S.F., Ismail, Z.: Planning a nutritious and healthy menu for Malaysian school children aged 13-18 using delete-reshuffle algorithm in binary integer programming. Appl. Sci> 15, 1239–1244 (2015)
Acknowledgment
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754382. This research has also been partially supported by Comunidad de Madrid, PROMINT-CM project (grant ref: P2018/EMT-4366) and by the project PID2020-115454GB-C21 of the Spanish Ministry of Science and Innovation (MICINN). The authors thank UAH, UFRJ and CEFET-MG for the infrastructure used to conduct this work, and Brazilian research agencies for partially support: CAPES (Finance Code 001), FAPERJ, and CNPq. “The content of this publication does not reflect the official opinion of the European Union. Responsibility for the information and views expressed herein lies entirely with the author(s).”
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Moreira, R.P.C., Marcelino, C.G., Martins, F.V.C., Wanner, E.F., Jimenez-Fernandez, S., Salcedo-Sanz, S. (2022). A Multi-objective Approach for the Menu Planning Problem: A Brazilian Case Study. In: Pereira, A.I., Košir, A., Fernandes, F.P., Pacheco, M.F., Teixeira, J.P., Lopes, R.P. (eds) Optimization, Learning Algorithms and Applications. OL2A 2022. Communications in Computer and Information Science, vol 1754. Springer, Cham. https://doi.org/10.1007/978-3-031-23236-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-23236-7_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23235-0
Online ISBN: 978-3-031-23236-7
eBook Packages: Computer ScienceComputer Science (R0)