[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Using Open Government Data to Facilitate the Design of Voting Advice Applications

  • Conference paper
  • First Online:
Electronic Participation (ePart 2022)

Abstract

In the process of statement selection for online voting advice applications (VAAs) a considerable amount of time is spent for analyzing the domestic and foreign policies of a given country. However, harnessing large amounts of available open data, which would be useful in this design process, manually is impractical. In order to facilitate such time-consuming and labor-intensive work, the authors propose a system to assist VAA designers formulating policy statements. Using advanced language modeling and text summarization techniques and based on open government data related to politics during the legislature preceding an election, the system produces suggestions applicable for revising or creating new VAA policy statements. Experiments conducted on VAA and e-petition data from Taiwan show that the proposed system can generate meaningful suggestions for VAA designers and could therefore help reducing the cost of the VAA design process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 43.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Acheampong, F.A., Nunoo-Mensah, H., Chen, W.: Transformer models for text-based emotion detection: a review of BERT-based approaches. Artif. Intell. Rev. 54(8), 5789–5829 (2021). https://doi.org/10.1007/s10462-021-09958-2

    Article  Google Scholar 

  2. Anderson, J., et al.: Matching Voters with Parties and Candidates: Voting Advice Applications in Comparative Perspective. ECPR Press, Colchester (2014)

    Google Scholar 

  3. Anwar, A., Ilyas, H., Yaqub, U., Zaman, S.: Analyzing QAnon on Twitter in context of US elections 2020: analysis of user messages and profiles using VADER and BERT topic modeling. In: DG.O2021: The 22nd Annual International Conference on Digital Government Research, pp. 82–88. DG.O 2021, ACM, New York, NY, USA (2021). https://doi.org/10.1145/3463677.3463718

  4. Arana-Catania, M., et al. : Citizen participation and machine learning for a better democracy. Digit. Gov.: Res. Pract. 2(3) (2021). https://doi.org/10.1145/3452118, https://doi.org/10.1145/3452118

  5. World Nuclear Association: Nuclear Power in Taiwan. https://world-nuclear.org/information-library/country-profiles/others/nuclear-power-in-taiwan.aspx (2021). Accessed 12 Dec 2021

  6. Cui, Y., et al.: Pre-training with whole word masking for Chinese BERT. arXiv pp. 1–11 (2019). https://arxiv.org/pdf/1906.08101.pdf

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota, June 2019. https://doi.org/10.18653/v1/N19-1423

  8. Gaglani, J., Gandhi, Y., Gogate, S., Halbe, A.: Unsupervised WhatsApp fake news detection using semantic search. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 285–289 (2020). https://doi.org/10.1109/ICICCS48265.2020.9120902

  9. Garzia, D., Marschall, S.: Voting advice applications under review: the state of research. Int. J. Electr. Govern. 5(3–4), 203–222 (2012)

    Article  Google Scholar 

  10. Gemenis, K.: An iterative expert survey approach for estimating parties’ policy positions. Qual. Quant. Int. J. Methodol. 49(6), 2291–2306 (2015)

    Article  Google Scholar 

  11. Giachanou, A., Zhang, G., Rosso, P.: Multimodal multi-image fake news detection. In: 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), pp. 647–654 (2020). https://doi.org/10.1109/DSAA49011.2020.00091

  12. Grootendorst, M.: Bertopic: neural topic modeling with a class-based TF-IDF procedure, pp. 1–10. arXiv preprint arXiv:2203.05794 (2022)

  13. Hagen, L.: Content analysis of e-petitions with topic modeling: how to train and evaluate LDA models? Inf. Proces. Manag. 54(6), 1292–1307 (2018). https://doi.org/10.1016/j.ipm.2018.05.006

    Article  Google Scholar 

  14. Hananto, V.R., Serdült, U., Kryssanov, V.: A text segmentation approach for automated annotation of online customer reviews, based on topic modeling. Appl. Sci. 12(7) (2022). https://doi.org/10.3390/app12073412

  15. Huang, H.Y., Kovacs, M., Kryssanov, V., Serdült, U.: Towards a model of online petition signing dynamics on the join platform in Taiwan. In: 2021 Eighth International Conference on eDemocracy eGovernment (ICEDEG), pp. 199–204 (2021). https://doi.org/10.1109/ICEDEG52154.2021.9530852

  16. iVoter: Taiwan’s voting advice application. http://ivoter.tw/ (2013). Accessed 10 Oct 2021

  17. Katakis, I., Tsapatsoulis, N., Mendez, F., Triga, V., Djouvas, C.: Social voting advice applications-definitions, challenges, datasets and evaluation. IEEE Trans. Cybern. 44(7), 1039–1052 (2013)

    Article  Google Scholar 

  18. Kovaleva, O., Romanov, A., Rogers, A., Rumshisky, A.: Revealing the dark secrets of BERT. In: Proceedings of the 2019 Conference on EMNLP-IJCNLP, pp. 4365–4374. Association for Computational Linguistics, Hong Kong, China, November 2019. https://doi.org/10.18653/v1/D19-1445

  19. Li, B., Zhou, H., He, J., Wang, M., Yang, Y., Li, L.: On the sentence embeddings from pre-trained language models. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, 16–20 November 2020, pp. 9119–9130. Association for Computational Linguistics (2020). https://www.aclweb.org/anthology/2020.emnlp-main.733/

  20. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction (2018). https://arxiv.org/abs/1802.03426

  21. Mendez, F.: Modeling proximity and directional decisional logic: what can we learn from applying statistical learning techniques to VAA-generated data? J. Elect. Public Opin. Parties 27(1), 31–55 (2017)

    Article  Google Scholar 

  22. Miller, D.: Leveraging BERT for extractive text summarization on lectures (2019). https://arxiv.org/ftp/arxiv/papers/1906/1906.04165.pdf

  23. Reiljan, A., da Silva, F.F., Cicchi, L., Garzia, D., Trechsel, A.H.: Longitudinal dataset of political issue-positions of 411 parties across 28 European countries (2009–2019) from voting advice applications EU profiler and euandi. Data Brief 31, 1–9 (2020). https://doi.org/10.1016/j.dib.2020.105968

    Article  Google Scholar 

  24. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-Networks. CoRR pp. 3982–3992 (2019). http://arxiv.org/abs/1908.10084

  25. Shirafuji, D., Kameya, H., Rzepka, R., Araki, K.: Summarizing utterances from japanese assembly minutes using political sentence-BERT-based method for QA Lab-PoliInfo-2 Task of NTCIR-15. CoRR, pp. 1–8 (2020). https://arxiv.org/abs/2010.12077

  26. Silva, N., et al.: Evaluating topic models in Portuguese political comments about bills from brazil’s chamber of deputies. In: Britto, André, Valdivia Delgado, Karina (eds.) BRACIS 2021. LNCS (LNAI), vol. 13074, pp. 104–120. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91699-2_8

    Chapter  Google Scholar 

  27. Silveira, R., Fernandes, C.G., Neto, J.A.M., Furtado, V., Filho, J.E.P.: Topic modelling of legal documents via LEGAL-BERT. In: RELATED 2021, Relations in the LegalDomain Workshop, in conjunction with ICAIL. pp. 64–72. CEUR-WS.org, Online (2021). http://ceur-ws.org/Vol-2896/

  28. Terán, L., Mancera, J.: Dynamic profiles using sentiment analysis and Twitter data for voting advice applications. Gov. Inf. Q. 36(3), 520–535 (2019). https://doi.org/10.1016/j.giq.2019.03.003

    Article  Google Scholar 

  29. World Nuclear News: taiwanese vote to keep nuclear in energy mix. https://www.world-nuclear-news.org/Articles/Taiwanese-vote-to-keep-nuclear-in-energy-mix (2021). Accessed 12 Dec 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniil Buryakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buryakov, D., Kovacs, M., Kryssanov, V., Serdült, U. (2022). Using Open Government Data to Facilitate the Design of Voting Advice Applications. In: Krimmer, R., et al. Electronic Participation. ePart 2022. Lecture Notes in Computer Science, vol 13392. Springer, Cham. https://doi.org/10.1007/978-3-031-23213-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23213-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23212-1

  • Online ISBN: 978-3-031-23213-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics