[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

STAU-Net: A Spatial Structure Attention Network for 3D Coronary Artery Segmentation

  • Conference paper
  • First Online:
Clinical Image-Based Procedures (CLIP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13746))

Included in the following conference series:

  • 539 Accesses

Abstract

Automated segmentation of coronary artery is critical yet challenging for the detection and quantification of cardiovascular diseases. Considering the limitation of computing power, most existing 3D coronary artery segmentation methods divide original data into patches or 2D slices for segmentation to support the limited GPU memory, thereby causing limited segmentation performance due to the loss of contextual information of coronary artery structure. To solve above issues, this paper proposes a novel model for 3D coronary artery segmentation by enhancing structural information of features. Specifically, the proposed framework consists of a structure attention fusion (STAF) block and up-sample fusion (UF) block. The STAF block utilizes channel attention and spatial attention to enhance the fused feature maps from the output of dilated convolution at adjacent scales, and the UF block offsets the loss contextual information by fusing the feature map of the upper decoder. Also, the framework first resamples the input to a fixed size to implement training and up-sample to original size by customized post-processing at output stage. Compared with other related segmentation networks, the results demonstrate that our method can segment more detailed information of coronary artery tree and achieve better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 39.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Joseph, P., et al.: Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors. Circ. Res. 121(6), 677–694 (2017)

    Article  Google Scholar 

  2. Goo, H.W., et al.: CT of congenital heart disease: normal anatomy and typical pathologic conditions. Radiographics 23(suppl_1), S147–S165 (2003)

    Google Scholar 

  3. Kerkeni, A., Benabdallah, A., Manzanera, A., Bedoui, M.H.: A coronary artery segmentation method based on multiscale analysis and region growing. Comput. Med. Imaging Graph. 48, 49–61 (2016)

    Article  Google Scholar 

  4. Lesage, D., Angelini, E.D., Funka-Lea, G., Bloch, I.: Adaptive particle filtering for coronary artery segmentation from 3D CT angiograms. Comput. Vision Image Underst. 151, 29–46 (2016)

    Article  Google Scholar 

  5. Nishi, T., et al.: Deep learning-based intravascular ultrasound segmentation for the assessment of coronary artery disease. Int. J. Cardiol. 333, 55–59 (2021)

    Article  Google Scholar 

  6. Haskins, G., Kruger, U., Yan, P.: Deep learning in medical image registration: a survey. Mach. Vision Appl. 31(1), 1–18 (2020)

    Google Scholar 

  7. Chen, H., Dou, Q., Yu, L., Qin, J., Heng, P.-A.: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. Neuroimage 170, 446–455 (2018)

    Article  Google Scholar 

  8. Öztürk, Ş: Class-driven content-based medical image retrieval using hash codes of deep features. Biomed. Signal Process. 68, 102601 (2021)

    Article  Google Scholar 

  9. Öztürk, Ş: Stacked auto-encoder based tagging with deep features for content-based medical image retrieval. Expert Syst. Appl. 161, 113693 (2020)

    Article  Google Scholar 

  10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2015, pp. 3431–3440. IEEE, Boston (2015)

    Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. Trans. Med. Imaging 37(12), 2663–2674 (2018)

    Article  Google Scholar 

  13. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  14. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision. 3DV 2016, pp 565–571. IEEE, California (2016)

    Google Scholar 

  15. Liang, D., et al.: Semi 3D-TENet: semi 3D network based on temporal information extraction for coronary artery segmentation from angiography video. Biomed. Signal Process. Control 69, 102894 (2021)

    Article  Google Scholar 

  16. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2017, pp. 2117–2125. IEEE, HI (2017)

    Google Scholar 

  17. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baiying Lei or Longjiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tong, G. et al. (2023). STAU-Net: A Spatial Structure Attention Network for 3D Coronary Artery Segmentation. In: Chen, Y., et al. Clinical Image-Based Procedures. CLIP 2022. Lecture Notes in Computer Science, vol 13746. Springer, Cham. https://doi.org/10.1007/978-3-031-23179-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23179-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23178-0

  • Online ISBN: 978-3-031-23179-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics